CAT Exam  >  CAT Tests  >  Daily Test for CAT Preparation  >  Test: CAT Quantitative Aptitude- 1 (October 7) - CAT MCQ

Test: CAT Quantitative Aptitude- 1 (October 7) - CAT MCQ


Test Description

10 Questions MCQ Test Daily Test for CAT Preparation - Test: CAT Quantitative Aptitude- 1 (October 7)

Test: CAT Quantitative Aptitude- 1 (October 7) for CAT 2025 is part of Daily Test for CAT Preparation preparation. The Test: CAT Quantitative Aptitude- 1 (October 7) questions and answers have been prepared according to the CAT exam syllabus.The Test: CAT Quantitative Aptitude- 1 (October 7) MCQs are made for CAT 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Test: CAT Quantitative Aptitude- 1 (October 7) below.
Solutions of Test: CAT Quantitative Aptitude- 1 (October 7) questions in English are available as part of our Daily Test for CAT Preparation for CAT & Test: CAT Quantitative Aptitude- 1 (October 7) solutions in Hindi for Daily Test for CAT Preparation course. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free. Attempt Test: CAT Quantitative Aptitude- 1 (October 7) | 10 questions in 20 minutes | Mock test for CAT preparation | Free important questions MCQ to study Daily Test for CAT Preparation for CAT Exam | Download free PDF with solutions
*Answer can only contain numeric values
Test: CAT Quantitative Aptitude- 1 (October 7) - Question 1

Arun, Barun, Chandan and Diksha have books in the ratio respectively. What is the the minimum number of books they must be having altogether?
(Enter ‘0’ as the answer if the answer cannot be determined.)


Detailed Solution for Test: CAT Quantitative Aptitude- 1 (October 7) - Question 1

The ratio of the books with them is 
LCM of 3, 5, 7 and 11 is 1155
So, they must be having books in the ratio
which is equivalent to 
385 : 231 : 165 : 105
Thus, the minimum number of books they must be having is
385 + 231 + 165 + 105 = 886
Hence, 886 is the correct answer.

Test: CAT Quantitative Aptitude- 1 (October 7) - Question 2

A circle with radius 6 cm is inscribed inside an equilateral triangle ABC. Three smaller circle are drawn touching the incircle and the sides of ABC as shown in the figure. Another triangle is formed by joining centres P,Q and R of these smaller circles. What is the perimeter of triangle PQR?

Detailed Solution for Test: CAT Quantitative Aptitude- 1 (October 7) - Question 2


Consider radius of each smaller circle be r and that of the larger circle be R = 6 cm.
Construct PD such that PD is perpendicular to AB.
In right triangle ADP, AP = DP/cos(APD) = DP/ cos(60) = 2DP = 2r
In right triangle OFA, OF/cos(AOF) = AO ⇒ R/(1/2) = AP+OP  ⇒ 2R=2r+r+R   ⇒ R = 3r
 In right triangle OEP, EP=OPcos(EPO) = (R + r)((√3)/2 = (4R/3)((√3) = 2R/(√3)
PQ=2EP = 4R/√3)
Perimeter = 12R/(√3) = 24√3 cm (R = 6cm)

Test: CAT Quantitative Aptitude- 1 (October 7) - Question 3

In a circle, two chords AB and CD intersect at a point E as shown in the figure. If AB = 6 cm and CD = 10 cm and ∠ OED = 30°, then find out the radius of the given circle.

 

Detailed Solution for Test: CAT Quantitative Aptitude- 1 (October 7) - Question 3

Let us draw perpendicular from centre of the circle to AB and CD.

We are given that ∠ OED = 30°, therefore ∠ AOE =90°-30° = 60°.
Let 'R' be the radius of the given circle. Then, in right-angle triangle ODF,
⇒ OF2 =OD2 −FD2
⇒ OF2 = R2 - 52
⇒ OF = 
In right-angle triangle OFE,

Similarly, in right-angle triangle OGA,
⇒ OG2 = OA2 - AG2
⇒ OG = 
In right-angle triangle OGE,

By equating (1) and (2)

⇒ 3*(R2-25)=R2-9
⇒ 2R2 =66
⇒ R = √33 cm
Hence, option C is the correct answer.

Test: CAT Quantitative Aptitude- 1 (October 7) - Question 4

The minimum value of the expression |x+3|+|x-3|+|x-6|+|x-5|+|x+5|

Detailed Solution for Test: CAT Quantitative Aptitude- 1 (October 7) - Question 4

Let f(x) = |x+3|+|x-3|+|x-6|+|x-5|+|x+5|
f(x) is a linear equation in x at all times. It will be a union of straight lines with inflection points at -3, 3, 6, 5 and -5. Hence, the minimum value of the expression occurs at one of these inflection points. We will calculate the value of f(x) at each of these points and then find out the least possible value of f(x)
f(-3) = 25
f(3) = 19
f(6) = 24
f(5) = 21
f(-5) = 31
19 is the least value.

Test: CAT Quantitative Aptitude- 1 (October 7) - Question 5

Which condition will a,b,c satisfy if the set of equations 3x + 4y + z = a, 2x + 6y + 4z = b and x - y - 2z = c has atleast 1 solution ? Also a + b + c ≠ 0.

Detailed Solution for Test: CAT Quantitative Aptitude- 1 (October 7) - Question 5

3x + 4y + z = a --> (1)
2x + 6y + 4z = b --> (2)
x - y - 2z = c --> (3)
Eliminating z from (1) and (2) , (1)x4 - (2) : 12x + 16y + 4z - (2x + 6y + 4z) = 4a - b
10x + 10 y = 4a - b
⇒ x + y = (4a - b)/10 - (4)
Eliminating z from (1) and (3), (1)x2 + 3 = 6x + 8y + 2z + (x - y - 2z) = 2a + c
⇒ x + y = (2a + c)/7 - (5)
Equating equations (4) and (5), we get,
(4a - b)/10 = (2a + c)/7
28a - 7b = 20a + 10c
Thus, 8a = 7b + 10c

*Answer can only contain numeric values
Test: CAT Quantitative Aptitude- 1 (October 7) - Question 6

DIRECTIONS for the question: Solve the following question and mark the best possible option.
A person can complete a job in 120 days. He works alone on Day 1. On Day 2, he is joined by another person who also can complete the job in exactly 120 days. On Day 3, they are joined by another person of equal efficiency. Like this, everyday a new person with the same efficiency joins the work. How many days are required to complete the job?


Detailed Solution for Test: CAT Quantitative Aptitude- 1 (October 7) - Question 6

Time taken by a person to complete 1 job = 120
Work done by a person in 1 day = 1/120
Work done on 2nd day by 2 persons of same efficiency = 1/120 + 2/120 = 3/120
Work done on 3rd day by 3 persons . of same efficiency = 1/120 + 2/120 + 3/120 = 6/120
Work done on nth day by n persons of same efficiency = (1+2+3+4....... + n)/120
1 Job is completed on nth day. So the work done will be equal to 1:
(1+2+3+4....... + n)/120 = 1
n(n+1)/2 = 120 ( Sum of 1st n natural numbers = n(n+1)/2 )
Substituting the values from the options, we'll get n=15

Test: CAT Quantitative Aptitude- 1 (October 7) - Question 7

How many points in the region enclosed by x > 0, y < 0 and 7x - 9y < 63 have integral coordinates?

Detailed Solution for Test: CAT Quantitative Aptitude- 1 (October 7) - Question 7


The region enclosed by the lines is a triangle in the third quadrant formed by the points (0,-7), (0,0) and (9,0). The number of coordinates in the region with x coordinate are as follows
x=0 ⇒ 8 points,
x=1, 7points,
x=2, 6points,
x=3, 5points,
x=4, 4points,
x=5, 4points and so on.
Total no. of points =41

*Answer can only contain numeric values
Test: CAT Quantitative Aptitude- 1 (October 7) - Question 8

How many scalene triangles with integral sides can be formed with a perimeter of 45 cm?


Detailed Solution for Test: CAT Quantitative Aptitude- 1 (October 7) - Question 8

The number of triangles that can be formed for a given perimeter 'p' is given by when p is even and  when p is odd, where [] is the nearest integer function.
The number of scalene triangles that can be formed for a given perimeter 'p' is given by when p is even and if p is odd.
Number of scalene triangles that can be formed with a perimeter of 45 cm = [422 /48] = [36.75]= 37
Therefore, 37 is the correct answer.

*Answer can only contain numeric values
Test: CAT Quantitative Aptitude- 1 (October 7) - Question 9

If a, b, c, and d are integers such that a + b + c + d = 30, then the minimum possible value of 
(a - b)2 + (a - c)2 + (a - d)2 is


Detailed Solution for Test: CAT Quantitative Aptitude- 1 (October 7) - Question 9

a + b + c + d = 30, a, b, c, d are integers.
(a – b)2 + (a – c)2 + (a – d)2 would have its minimum value when each bracket has the least possible value.
Let (a, b, c, d) = (8, 8, 7, 7)
The given expression would be 2.
It cannot have a smaller value

*Answer can only contain numeric values
Test: CAT Quantitative Aptitude- 1 (October 7) - Question 10

Eight years ago, the ratio of ages of Akhil and Akash was 1:5. 12 years from now, the ratio changes to 7 : 15. Find the sum of the antecedent and the consequent of the ratio of their present ages, when the ratio is in its lowest form.


Detailed Solution for Test: CAT Quantitative Aptitude- 1 (October 7) - Question 10

Let the present ages of Akhil and Akash be x and y respectively.

⇒ 5x - 40 = y - 8
⇒ 5x - y = 32
⇒ y = 5x - 32


⇒ 15x + 180 = 7y + 84
⇒ 15x + 180 = 7(5x - 32) + 84
⇒ 15x + 96 = 35x - 224
⇒ 20x = 320
⇒ x = 16
⇒ y = 48
x:y = 16:48 = 1:3
Sum of antecedent and consequent = 1 + 3 = 4

152 docs|327 tests
Information about Test: CAT Quantitative Aptitude- 1 (October 7) Page
In this test you can find the Exam questions for Test: CAT Quantitative Aptitude- 1 (October 7) solved & explained in the simplest way possible. Besides giving Questions and answers for Test: CAT Quantitative Aptitude- 1 (October 7), EduRev gives you an ample number of Online tests for practice
Download as PDF