Test: Combinatory- 3 - Computer Science Engineering (CSE) MCQ


Test Description

15 Questions MCQ Test GATE Computer Science Engineering(CSE) 2024 Mock Test Series - Test: Combinatory- 3

Test: Combinatory- 3 for Computer Science Engineering (CSE) 2024 is part of GATE Computer Science Engineering(CSE) 2024 Mock Test Series preparation. The Test: Combinatory- 3 questions and answers have been prepared according to the Computer Science Engineering (CSE) exam syllabus.The Test: Combinatory- 3 MCQs are made for Computer Science Engineering (CSE) 2024 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Test: Combinatory- 3 below.
Solutions of Test: Combinatory- 3 questions in English are available as part of our GATE Computer Science Engineering(CSE) 2024 Mock Test Series for Computer Science Engineering (CSE) & Test: Combinatory- 3 solutions in Hindi for GATE Computer Science Engineering(CSE) 2024 Mock Test Series course. Download more important topics, notes, lectures and mock test series for Computer Science Engineering (CSE) Exam by signing up for free. Attempt Test: Combinatory- 3 | 15 questions in 45 minutes | Mock test for Computer Science Engineering (CSE) preparation | Free important questions MCQ to study GATE Computer Science Engineering(CSE) 2024 Mock Test Series for Computer Science Engineering (CSE) Exam | Download free PDF with solutions
1 Crore+ students have signed up on EduRev. Have you? Download the App
Test: Combinatory- 3 - Question 1

How many onto (or surjective) functions are there from an n-element (n >= 2) set to a 2-element set?

Detailed Solution for Test: Combinatory- 3 - Question 1

Total possible number of functions is 2n. In mathematics, a function f from a set X to a set Y is surjective (or onto), or a surjection, if every element y in Y has a corresponding element x in X such that f(x) = y (Source: http://en.wikipedia.org/wiki/Surjective_function) There are total 2 functions out of 2n that are NOT onto: one that maps to all 1s and other that maps to all 2s. Therefore total number of onto functions is 2n - 2.

Test: Combinatory- 3 - Question 2

What is the possible number of reflexive relations on a set of 5 elements?

Detailed Solution for Test: Combinatory- 3 - Question 2

Number of reflexive relations is 2n2-n which is 220 for n = 5

Test: Combinatory- 3 - Question 3

What is the maximum number of different Boolean functions involving n Boolean variables?

Detailed Solution for Test: Combinatory- 3 - Question 3

No of inputs sequences possible for a n variable Boolean function = 2n Each input sequence can give either T or F as output ( 2 possible values ) So, Total no of Boolean functions are -

2X2X2X2X2X2X.............X2X2X2X2X2X2 <-------------------- 2n Times --------------> 22n

Test: Combinatory- 3 - Question 4

Suppose that a robot is placed on the Cartesian plane. At each step it is allowed to move either one unit up or one unit right, i.e., if it is at (i,j) then it can move to either (i+1,j) or (i,j+1). How many distinct paths are there for the robot to reach the point (10,10) starting from the initial position (0, 0)

Detailed Solution for Test: Combinatory- 3 - Question 4

At each move, robot can move either 1 unit right, or 1 unit up, and there will be 20 such moves required to reach (10,10) from (0,0). So we have to divide these 20 moves, numbered from 1 to 20, into 2 groups: right group and up group. Right group contains those moves in which we move right, and up group contains those moves in which we move up. Each group contains 10 elements each. So basically, we have to divide 20 things into 2 groups of 10 10 things each, i.e., we need to find all possible arrangements of {r, r, r, r, r, r, r, r, r, r, u, u, u, u, u, u, u, u, u, u} where r represents right move and u represents up move. The arrangements can can be done in 20! / (10!∗10!) = 20C10 ways. So option (A) is correct.

Test: Combinatory- 3 - Question 5

Consider the data given in above question. Suppose that the robot is not allowed to traverse the line segment from (4,4) to (5,4). With this constraint, how many distinct paths are there for the robot to reach (10,10) starting from (0,0)?

Detailed Solution for Test: Combinatory- 3 - Question 5

Since we are not allowed to traverse from (4,4) to (5,4), we subtract all those paths which were passing through (4,4) to (5,4). To count number of paths passing through (4,4) to (5,4), we find number of paths from (0,0) to (4,4), and then from (5,4) to (10,10).

So option (D) is correct.

Test: Combinatory- 3 - Question 6

Let ∑ be a finite non-empty alphabet and let  be the power set of ∑*. Which one of the following is TRUE?

Test: Combinatory- 3 - Question 7

The number of different n × n symmetric matrices with each element being either 0 or 1 is: (Note: power(2, x) is same as 2x)

Detailed Solution for Test: Combinatory- 3 - Question 7

We are considering a symmetric matrix (given in question). So, we need to look at half of elements ie. either upper or lower traingle i.e. A[i][j] = A[j][i] Hence, No. of elements = (n^2 + n)/2 Since, we have only two elements : 0 & 1 No. of choices = 2 Therefore, No. of possibilities = 2 ^ (No. of elements) = 2 ^ ((n^2 + n)/2) = power (2 , (n^2 + n)/2) 

Test: Combinatory- 3 - Question 8

Mala has a colouring book in which each English letter is drawn two times. She wants to paint each of these 52 prints with one of k colours, such that the colour-pairs used to colour any two letters are different. Both prints of a letter can also be coloured with the same colour. What is the minimum value of k that satisfies this requirement ?

Detailed Solution for Test: Combinatory- 3 - Question 8

This question is slightly ambiguous. So first let us understand what question is asking. So in a book, we have letters A-Z and each letter is printed twice, so there are 52 letters. Now we have to color each letter, so we need a pair of colors for that, because each letter is printed twice. Also in a pair, both colors can be some. Now condition is that a pair of colors can't be used more than once. So suppose Mala has 3 colors : Red, Blue, Green. She can color as follows : (A,A) : (Red,Red), (B,B) : (Blue,Blue), (C,C) : (Green,Green), (D,D) : (Red,Blue), (E,E) : (Red,Green), (F,F) : (Blue,Green). Now we don't have more pairs of colors left, we have used all pairs, but could color only 6 letters out of 26. So question is to find minimum no. of colors, so that we could color all 26 letters. So if Mala has k colors, she can have k pairs of same colors, thus coloring k letters, then kC2 other pairs of colors, thus coloring kC2 more letters. So total no. of letters colored = k+kC2=k+k(k−1)2=k(k+1)2. So we want k(k+1)2≥26 i.e. k(k+1)≥52, so k≥7, so option (C) is correct.

Test: Combinatory- 3 - Question 9

Let A be a sequence of 8 distinct integers sorted in ascending order. How many distinct pairs of sequences, B and C are there such that
(i) each is sorted in ascending order,
(ii) B has 5 and C has 3 elements, and
(iii) the result of merging B and C gives A?

Detailed Solution for Test: Combinatory- 3 - Question 9

Suppose you have selected 3 elements from 8 in 8C3 ways, the remaining elements are treated as another array and merging both the arrays gives the sorted array. Here, you can select either 3 or 5. => 8C3 = 8C5 = 8!/(3!5!) = 7*8 = 56 Ways.

Test: Combinatory- 3 - Question 10

n couples are invited to a party with the condition that every husband should be accompanied by his wife. However, a wife need not be accompanied by her husband. The number of different gatherings possible at the party is

Detailed Solution for Test: Combinatory- 3 - Question 10

There are three options for every couple.

1) Nobody goes to gathering
2) Wife alone goes
3) Both go

Since there are n couples, total possible ways of gathering are 3n

Test: Combinatory- 3 - Question 11

m identical balls are to be placed in n distinct bags. You are given that m ≥ kn, where, k is a natural number ≥ 1. In how many ways can the balls be placed in the bags if each bag must contain at least k balls?

Detailed Solution for Test: Combinatory- 3 - Question 11

This is very simple application of stars and bars. Since we want atleast k balls in each bag, so first we put kn balls into bags, k balls in each bag. Now we are left with m - kn balls, and we have to put them into n bags such that each bag may receive 0 or more balls. So applying theorem 2 of stars and bars with m - nk stars and n bars, we get number of ways to be m−kn+n-1 Cn−1. So option (B) is correct.

Test: Combinatory- 3 - Question 12

How many 4-digit even numbers have all 4 digits distinct?

Detailed Solution for Test: Combinatory- 3 - Question 12

This is a basic permutation combination question. Considering two cases : numbers ending with 0 and not ending with 0: Numbers ending with 0 1{first place: 0} ∗9{fourth place: 9 possibilities, 1-9} ∗8{third place: 8 possibilities left} ∗7{second place: 7 possibilities left} = 504 Numbers ending with non-0 4{first place: 2,4,6,8} ∗8{fourth place: 8 possibilities left, 1-9}∗8{third place: 8 possibilities left b/w 0-9} ∗7{second place: 7 possibilities left b/w 0-9} = 2592 Total = 2296

Test: Combinatory- 3 - Question 13

For a set A, the power set of A is denoted by 2A. If A = {5, {6}, {7}}, which of the following options are True. 


Detailed Solution for Test: Combinatory- 3 - Question 13

I is true, as φ belongs to Powerset.
II is true, as an empty set is a subset of every set.
III is true as {5, {6}} belongs to Powerset.
IV is false, {5, {6}} is not a subset, but {{5, {6}}} is.

Test: Combinatory- 3 - Question 14

The number of 4 digit numbers having their digits in non-decreasing order (from left to right) constructed by using the digits belonging to the set {1, 2, 3} is ____.

Detailed Solution for Test: Combinatory- 3 - Question 14

{1, 1, 1, 1} {1, 1, 1, 2} {1, 1, 1, 3} {1, 1, 2, 2} {1, 1, 2, 3} {1, 1, 3, 3} {1, 2, 2, 2} {1, 2, 2, 3} {1, 2, 3, 3} {1, 3, 3, 3} {2, 2, 2, 2} {2, 2, 2, 3} {2, 2, 3, 3} {2, 3, 3, 3} {3, 3, 3, 3}

Test: Combinatory- 3 - Question 15

How many substrings of different length (non-zero) can be formed from a character string of length n ?

150 docs|216 tests
Information about Test: Combinatory- 3 Page
In this test you can find the Exam questions for Test: Combinatory- 3 solved & explained in the simplest way possible. Besides giving Questions and answers for Test: Combinatory- 3, EduRev gives you an ample number of Online tests for practice
Download as PDF
Download the FREE EduRev App
Track your progress, build streaks, highlight & save important lessons and more!