JEE Exam  >  JEE Tests  >  JEE Main 2019 January 10 Shift 1 Paper & Solutions - JEE MCQ

JEE Main 2019 January 10 Shift 1 Paper & Solutions - JEE MCQ


Test Description

30 Questions MCQ Test - JEE Main 2019 January 10 Shift 1 Paper & Solutions

JEE Main 2019 January 10 Shift 1 Paper & Solutions for JEE 2025 is part of JEE preparation. The JEE Main 2019 January 10 Shift 1 Paper & Solutions questions and answers have been prepared according to the JEE exam syllabus.The JEE Main 2019 January 10 Shift 1 Paper & Solutions MCQs are made for JEE 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for JEE Main 2019 January 10 Shift 1 Paper & Solutions below.
Solutions of JEE Main 2019 January 10 Shift 1 Paper & Solutions questions in English are available as part of our course for JEE & JEE Main 2019 January 10 Shift 1 Paper & Solutions solutions in Hindi for JEE course. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free. Attempt JEE Main 2019 January 10 Shift 1 Paper & Solutions | 90 questions in 180 minutes | Mock test for JEE preparation | Free important questions MCQ to study for JEE Exam | Download free PDF with solutions
JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 1

A uniform metallic wire has a resistance of 18 Ω and is bent into an equilateral triangle. Then, the resistance between any two vertices of the triangle is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 1


Req between any two vertex will be

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 2

A satellite is moving with a constant speed v in circular orbit around the earth. An object of mass 'm' is ejected from the satellite such that it just escapes from the gravitational pull of the earth. At the time of ejection, the kinetic energy of the object is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 2

At height r from center of earth. orbital velocity

∴ By energy conservation

(At infinity, PE = KE = 0)

 

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 3

A solid metal cube of edge length 2 cm is moving in the positive y-direction at a constant speed of 6 m/s. There is a uniform magnetic field of 0.1 T in the positive z-direction. The potential difference between the two faces of the cube perpendicular to the x-axis is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 3

Potential difference between two faces perpendicular to x-axis will be

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 4

A parallel plate capacitor is of area 6 cm2 and a separation 3 mm. The gap is filled with three dielectric materials of equal thickness (see figure) with dielectric constants K1, = 10, K2 = 12 and K3 = 14. The dielectric constant of a material which when fully inserted in above capacitor, gives same capacitance would be :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 4

Let dielectric constant of material used be K.

⇒ K = 12

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 5

A 2 W carbon resistor is color coded with green, black, red and brown respectively. The maximum current which can be passed through this resistor is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 5

P = i2R.
∴ for imax, R must be minimum
from color coding R = 50×102Ω
∴ imax = 20mA

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 6

In a Young's double slit experiment with slit separation 0.1 mm, one observes a bright fringe at angle 1/40 rad by using light of wavelength λ1. When the light of wavelength λ2 is used a bright fringe is seen at the same angle in the same set up. Given that λand λare in visible range (380 nm to 740 nm), their values are :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 6

Path difference = d sinθ ≈ dθ
= 0.1 x 1/40 mm = 2500nm
or bright fringe, path difference must be integral multiple of λ.
∴ 2500 = nλ1 = mλ2
∴ λ1 = 625, λ2 = 500 (from m=5) (for n = 4)

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 7

A magnet of total magnetic moment 10-2 î A-m2 is placed in a time varying magnetic field, B î (costωt) where B = l Tesla and ω = 0.125 rad/ s. The work done for reversing the direction of the magnetic moment at t = 1 second, is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 7

Work done,

= 2 × 10–2 × 1 cos(0.125)
= 0.02 J
∴ correct answer is (2)

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 8

To mop-clean a floor, a cleaning machine presses a circular mop of radius R vertically down with a total force F and rotates it with a constant angular speed about its axis. If the force F is distributed uniformly over the mop and if coefficient of friction between the mop and the floor is μ the torque, applied by the machine on the mop is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 8


Consider a strip of radius x & thickness dx, Torque due to friction on this strip.


JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 9

Using a nuclear counter the count rate of emitted particles from a radioactive source is measured. At t = 0 it was 1600 counts per second and t = 8 seconds it was 100 counts per second. The count rate observed, as counts per second, at t = 6 seconds is close to:

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 9

at t = 0, A0 = dN/dt = 1600 C/s
at t = 8s, A = 100 C/s

Therefor half life is t1/2 = 2 sec
∴ Activity at t = 6 will be 1600 (1/2)= 200 C/s

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 10

If the magnetic field of a plane electromagnetic wave is given by (The speed of light = 3 × 108/m/s)
 then the maximum electric field associated with it is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 10

E0 = B0 × C
= 100 × 10–6 × 3 × 108
= 3 × 104 N/C

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 11

A charge Q is distributed over three concentric spherical shells of radii a, b, c (a < b < c ) such that their surface charge densities are equal to one another. The total potential at a point at distance r from their common centre, where r < a, would be :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 11





 

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 12

Water flows into a large tank with flat bottom at the rate of 10–4 m3s–1. Water is also leaking out of a hole of area 1 cm2 at its bottom. If the height of the water in the tank remains steady, then this height is:

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 12


Since height of water column is constant therefore, water inflow rate (Qin)
= water outflow rate
Qin = 10–4 m3s–1

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 13

A piece of wood of mass 0.03 kg is dropped from the top of a 100 m height building. At the same time, a bullet of mass 0.02 kg is fired vertically upward, with a velocity 100 ms–1, from the ground. The bullet gets embedded in the wood. Then the maximum height to which the combined system reaches above the top of the building before falling below is : (g =10ms–2)

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 13


Time taken for the particles to collide,

Speed of wood just before collision = gt = 10 m/s & speed of bullet just before collision v-gt = 100 – 10 = 90 m/s
Now, conservation of linear momentum just before and after the collision -
–(0.02) (1v) + (0.02) (9v) = (0.05)v
⇒ 150 = 5v
⇒ v = 30 m/s
Max. height reached by body h = v2/2g


∴  Height above tower = 40 m

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 14

The density of a material in SI units is 128 kg m-3. In certain units in which the unit of length is 25 cm and the unit of mass is 50 g, the numerical value of density of the material is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 14



= 40 units

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 15

To get output '1' at R, for the given logic gate circuit the input values must be :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 15



To make O/P P + Q must be 'O' SO, y = 0 x = 1

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 16

A block of mass m is kept on a platform which starts from rest with constant acceleration g/2 upward, as shown in fig. Work done by normal reaction on block in time t is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 16



JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 17

A heat source at T= 103 K is connected to another heat reservoir at T=102 K by a copper slab which is 1 m thick. Given that the thermal conductivity of copper is 0.1 WK-1 m-1, the energy flux through it in the steady state is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 17



JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 18

A TV transmission tower has a height of 140 m and the height of the receiving antenna is 40 m. What is the maximum distance upto which signals can be broadcasted from this tower in LOS(Line of Sight) mode ? (Given : radius of earth = 6.4 x 106m).

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 18

Maximum distance upto which signal can be broadcasted is

where hT and hR are heights of transmiter tower and height of receiver respectively.
Putting all values -

on solving, dmax = 65 km

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 19

A potentiometer wire AB having length L and resistance 12 r is joined to a cell D of emf ε and internal resistance r. A cell C having emf ε/2 and internal resistance 3r is connected. The length AJ at which the galvanometer as shown in fig. shows no deflection is:

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 19

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 20

An insulating thin rod of length ℓ has a x linear charge density λ (x) =  on it. The rod is rotated about an axis passing through the origin (x = 0) and perpendicular to the rod. If the rod makes n rotations per second, then the time averaged magnetic moment of the rod is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 20



JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 21

Two guns A and B can fire bullets at speeds 1 km/s and 2 km/s respectively. From a point on a horizontal ground, they are fired in all possible directions. The ratio of maximum areas covered by the bullets fired by the two guns, on the ground is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 21



JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 22

A string of length 1 m and mass 5 g is fixed at both ends. The tension in the string is 8.0 N. The string is set into vibration using an external vibrator of frequency 100 Hz. The separation between successive nodes on the string is close to :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 22

Velocity of wave on string

Now, wavelength of wave 

Separation b/w successive nodes, 

= 20 cm

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 23

A train moves towards a stationary observer with speed 34 m/s. The train sounds a whistle and its frequency registered by the observer is f1. If the speed of the train is reduced to 17 m/s, the frequency registered is f2. If speed of sound is 340 m/s, then the ratio f1/f2 is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 23




JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 24

In an electron microscope, the resolution that can be achieved is of the order of the wavelength of electrons used. To resolve a width of 7.5 × 10–12m, the minimum electron energy required is close to :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 24

 {λ = 7.5 × 10–12}


KE = 25 Kev

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 25

A homogeneous solid cylindrical roller of radius R and mass M is pulled on a cricket pitch by a horizontal force. Assuming rolling without slipping, angular acceleration of the cylinder is:

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 25


JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 26

A plano convex lens of refractive index µ1 and focal length f1 is kept in contact with another plano concave lens of refractive index µ2 and focal length f2. If the radius of curvature of their spherical faces is R each and f1 = 2f2, then µ1 and µ2 are related as 

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 26



JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 27

Two electric dipoles, A, B with respective dipole moments and placed on the x-axis with a separation R, as shown in the figure

The distance from A at which both of them produce the same potential is :

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 27




JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 28

In the given circuit the cells have zero internal resistance. The currents (in Amperes) passing through resistance R1, and R2 respectively, are:

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 28

i1 = 10/20 = 0.5A
i2 = 0 

JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 29

In the cube of side 'a' shown in the figure, the vector from the central point of the face ABOD to the central point of the face BEFO will be:

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 29



JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 30

Three Carnot engines operate in series between a heat source at a temperature T1 and a heat sink at temperature T4 (see figure). There are two other reservoirs at temperature T2, and T3, as shown, with T2 > T2 > T3 > T4 . The three engines are equally efficient if:

Detailed Solution for JEE Main 2019 January 10 Shift 1 Paper & Solutions - Question 30




View more questions
Information about JEE Main 2019 January 10 Shift 1 Paper & Solutions Page
In this test you can find the Exam questions for JEE Main 2019 January 10 Shift 1 Paper & Solutions solved & explained in the simplest way possible. Besides giving Questions and answers for JEE Main 2019 January 10 Shift 1 Paper & Solutions, EduRev gives you an ample number of Online tests for practice
Download as PDF