1 Crore+ students have signed up on EduRev. Have you? 
If the first and the (2n – 1)st terms of an A.P., a G.P. and an H.P. are equal and their nth terms are a, b and c respectively, th en (1988  2 Marks)
Let x be the first term and y the (2n–1)th terms of AP, GP and HP whose nth terms are a, b, c respectively.
For AP, y = x + (2n – 2) d
....(1)
For G.P.
....(2)
For H.P.
....(3)
Thus from (1), (2) and (3), a, b, c are A.M., G.M. and H.M. respectively of x and y
For 0 < φ < π/2, if then: (1993  2 Marks)
We have for
....(1)
[Using sum of infinite G.P. cos^{2}α being < 1]
....(2)
...(3)
Substituting the values of cos^{2}φ and sin^{2}φ in (3), from (1) and (2), we get
Thus (b) and (c) both are correct.
Let n be an odd integer. If for every value of q, then (1998  2 Marks)
Putting θ = 0, we get b_{0}= 0
= b^{1} + b^{2} sinθ+ b^{3} sin^{ 2}θ + ...... +b_{n} sin^{ n1}θ
Taking limit as θ → 0, we obtain
Let Tr be the rth term of an A.P., for r = 1, 2, 3, .... If for some positive integers m, n we have equals (1998  2 Marks)
If x > 1, y > 1, z > 1 are in G.P., then are in (1998  2 Marks)
If x, y, z are in G.P. (x, y, z > 1); log x, log y, log z will be in A.P.
⇒ 1 + log x, 1 + log y, 1 + log z will also be in A.P.
will be in H.P..
For a positive integer n, let . Then (1999  3 Marks)
We have
Thus, a (100) < 100
Also
Thus, a (200) >
i.e. a (200) > 100.
A straight line through the vertex P of a triangle PQR intersects the side QR at the point S and the circumcircle of the triangle PQR at the point T. If S is not the centre of the circumcircle, then (2008)
We know by geometry PS × ST = QS × SR ...(1)
∵ S is not the centre of circulm circle,
PS ≠ ST
And we know that for two unequal real numbers.
H.M. < G.M
[using eqn (1)] ...(2)
∴ (b) is the correct option.
Also
From equations (2) and (3) we get
∴ (d) is also the correct option.
Let = 1, 2, 3, ............ Then, (2008)
We have
and
For n = 1 we get
Also = 0.34 × 1.73 = 0.58
Let Then S_{n} can take value(s) (JEE Adv. 2013)
= 8n^{2} + 8n^{2 }+ 4n = 16n^{2 }+ 4n
For n = 8, 16n^{2} + 4n = 1056
and for n = 9, 16n^{2} + 4n = 1332
132 docs70 tests

Use Code STAYHOME200 and get INR 200 additional OFF

Use Coupon Code 
132 docs70 tests









