NEET  >  31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1

# 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1

Test Description

## 20 Questions MCQ Test Physics Class 12 | 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 for NEET 2023 is part of Physics Class 12 preparation. The 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 questions and answers have been prepared according to the NEET exam syllabus.The 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 MCQs are made for NEET 2023 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 below.
Solutions of 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 questions in English are available as part of our Physics Class 12 for NEET & 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 solutions in Hindi for Physics Class 12 course. Download more important topics, notes, lectures and mock test series for NEET Exam by signing up for free. Attempt 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 | 20 questions in 40 minutes | Mock test for NEET preparation | Free important questions MCQ to study Physics Class 12 for NEET Exam | Download free PDF with solutions
 1 Crore+ students have signed up on EduRev. Have you?
31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 1

### The magnetic force acting on a charged particleof charge – 2μC in a magnetic field of 2T actingin y direction, when the particle velocity is  , is

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 1

The magnetic force acting on the char ged paraticle is given by

∴  Force is of 8N along – z-axis.

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 2

### Under the influence of a uniform magnetic field,a charged particle moves with constant speed vin a circle of radius R. The time period of rotationof the particle: [2009]

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 2

The time period of the charged particle is
given by

Thus, time period is independent of both v and R.

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 3

### A thin ring of radius R meter has charge q coulomb uniformly spread on it. The ring rotates about its axis with a constant frequency of f revolutions/s. The value of magnetic induction in Wb/m2 at the centre of the ring is [2010]

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 3

Current in the ring due to rotation,

Therefore, magnetic field at the centre of the ring is

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 4

A galvanometer has a coil of resistance 100 ohmand gives a full-scale deflection for 30 mAcurrent. It is to work as a voltmeter of 30 voltrange, the resistance required to be added willbe           [2010]

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 4

Let the resistance to be added be R, then

30 = Ig(r + R)

= 1000 – 100 = 900Ω

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 5

A square current carrying loop is suspended in a uniform magnetic field acting in the plane of the loop. If the force on one arm of the loop is , the net force on the remaining three arms of the loop is

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 5

The force on the two arms parallel to the field is zero.

∴ Force on remaining arms = – F

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 6

A particle having a mass of 10–2 kg carries a charge of 5 × 10–C. The particle is given an initial horozontal velocity of 105 ms–1 in the presence of electric field   and magnetic field  . To  keep the particle moving in a horizontal direction, it is necessary that

(1)  should be perpendicular to the direction of velocity and should be along the direction of velocity.

(2) Both   and  should be along the direction of velocity.

(3) Both   and  are mutually perpendicular and perpendicular to the direction of velocity.

(4)  should be along the direction of velocity and should be perpendicular to the direction of velocity

Which one of the following pairs of statements is possible?

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 6

Case 1:- In figure 1 if FE​=FB​ ⇒ particle will always move in a straight line.(option (iii))
Case 2:- In figure 2 particle will always move in a straight line.(option (ii))

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 7

A closely wound solenoid of 2000 turns and areaof cross-section 1.5 × 10–4 m2 carries a currentof 2.0 A. It suspended through its centre andperpendicular to its length, allowing it to turn ina horizontal plane in a uniform magnetic field 5 ×10–2 tesla making an angle of 30° with the axis ofthe solenoid. The torque on the solenoid will be:

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 7

Torque on the solenoid is given by ζ = MB sinθ where θ is the angle between the magnetic field and the axis of solenoid.
M = niA
∴   ζ = niA B sin 30°

= 1.5 x 10-2 N-m

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 8

A current loop consists of two identical semicircular parts each of radius R, one lying in the x-y plane and the other in x-z plane. If the current in the loop is i., the resultant magnetic field due to the two semicircular parts at their common centre is

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 8

Magnetic fields due to the two parts at their common centre are respectively,

Resultant field =

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 9

A current carrying loop in the form of a right angle isosceles triangle ABC is placed in a uniform magnetic field acting along AB. If the magnetic force on the arm BC is F, what is the force on the arm AC?

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 9

Let a current i be flowing in the loop ABC in the direction shown in the figure. If the length of each of the sides AB and BC be x then

where B is the magnitude of the magnetic force.
The direction ofwill be in the direction perpendicular to the plane of the paper and going into it.
By Pythagorus theorem,

∴ Magnitude of force on AC

x  B sin 45°

The direction of the force on AC is perpendicular to the plane of the paper and going out of it. Hence, force on

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 10

A uniform electric field and uniform magneticfield are acting along the same direction in acertain region. If an electron is projected in theregion such that its velocity is pointed alongthe direction of fields, then the electron        [2011]

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 10

are in same direction so that magnetic force on electron becomes zero, only electric force acts. But force on electron due to electric field is opposite to the direction of velocity.

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 11

A galvanometer of resistance, G is shunted by a resistance S ohm. To keep the main current in the circuit unchanged, the resistance to be put in series with the galvanometer is          [2011M]

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 11

To keep the main current in the circuit unchanged, the resistance of the galvanometer should be equal to the net resistance.

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 12

A square loop, carrying a steady current I, is placed in a horizontal plane near a long straight conductor carrying a steady current I1 at a distance d from the conductor as shown in figure. The loop will experience    [2011M]

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 12

and F3 and F4 are equal and opposite. Hence, the net attraction force will be towards the conductor.

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 13

Charge q is uniformly spread on a thin ring of radius R. The ring rotates about its axis with a uniform frequency f Hz. The magnitude of magnetic induction at the centre of the ring is        [2011M]

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 13

When the ring rotates about its axis with a uniform frequency f Hz, the current flowing in the ring is

Magnetic field at the centre of the ring is

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 14

Two similar coils of radius R are lying concentrically with their planes at right angles to each other. The currents flowing in them are
I and 2 I, respectively. The resultant magnetic field induction at the centre will be:      [2012]

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 14

The magnetic field, due the coil, carrying current I Ampere

The magnetic field due to the coil, carrying current 2I Ampere

The resultant B

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 15

An alternating electric field, of frequency v, is applied across the dees (radius = R) of a cyclotron that is being used to accelerate
protons (mass = m). The operating magnetic field (B) used in the cyclotron and the kinetic energy (K) of the proton beam, produced by it, are given by : [2012]

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 15

Time period of cyclotron is

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 16

An α-particle moves in a circular path of radius   0.83 cm in the presence of a magnetic field of  0.25 Wb/m2. The de-Broglie wavelengthassociated with the particle will be :  [2012]

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 16

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 17

A proton carrying 1 MeV kinetic energy ismoving in a circular path of radius R in uniformmagnetic field. What should be the energy of an α -particle to describe a circle of same radius inthe same field?    [2012M]

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 17

According to the principal of circular motion in a magnetic field

but    R = Rα (given)

Thus K = K' = 1 MeV

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 18

A current loop in a magnetic field [NEET 2013]

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 18

A current loop in a magnetic field is in equilibrium in two orientations one is stable and another unstable.

= M B sinθ

Do not experience a torque in some orientations Hence option (c) is correct.

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 19

When a proton is released from rest in a room, it starts with an initial acceleration a0 towards west. When it is projected towards north with a speed v0 it moves with an initial acceleration 3a0 towards west. The electric and magnetic fields in the room are respectively      [NEET 2013]

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 19

When moves with an acceleration a0 towards west, electric field

When moves with an acceleration 3a0 towards east, magnetic field

(downward)

31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 20

A long straight wire carries a certain current and produces a magnetic field of  at a perpendicular distance of 5 cm from the wire. An electron situated at 5 cm from the wire moves with a velocity 107 m/s towards the wire along perpendicular to it. The force experienced by the electron will be
(charge on electron =1.6 × 10–19 C)

Detailed Solution for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 - Question 20

Given: Magnetic field B = 2 × 10–4 weber/m2
Velocity of electron, v = 107  m/s
Lorentz force F = qvB sinθ = 1.6 × 10–19 × 107 × 2 × 10–4 (∵ θ = 90°)
= 3.2 × 10–16 N

## Physics Class 12

157 videos|452 docs|213 tests
 Use Code STAYHOME200 and get INR 200 additional OFF Use Coupon Code
Information about 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 Page
In this test you can find the Exam questions for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1 solved & explained in the simplest way possible. Besides giving Questions and answers for 31 Year NEET Previous Year Questions: Moving Charges & Magnetism - 1, EduRev gives you an ample number of Online tests for practice

## Physics Class 12

157 videos|452 docs|213 tests

### How to Prepare for NEET

Read our guide to prepare for NEET which is created by Toppers & the best Teachers