1 Crore+ students have signed up on EduRev. Have you? 
In a two element series circuit, the applied voltage and the resulting current are v(t) = 60 + 66sin (10 t) V, i(t) = 2.3sin (10^{3}t + 68.3^{o}) A.The nature of the elements would be
RCcauses a positive phase shift in voltage
10 sin (t + 30°) = 10 cos (t  60°)
The circuit is as shown in fig.
i_{1}( t) = ?
The circuit is as shown in fig
i_{2}(t) = ?
Let V_{o} be the voltage across current source
V_{o}(20 + j10)  (20 + j40) V_{x} = j600
Determine the complex power for hte given values in question.
P = 269 W, Q = 150 VAR (capacitive)
S = PjQ = 269j150 VA
Determine the complex power for hte given valuesin question.
Q = 2000 VAR, pf =09. (leading)
pf = cos θ = 0.9 ⇒ θ = 25.84°
Q = S sin θ ⇒
Determine the complex power for hte given values in question.
S = 60 VA, Q = 45 VAR (inductive)
Q = S sin θ ⇒
Determine the complex power for hte given values in question.
V_{rms} = 220 V, P = 1 kW, Z = 40Ω (inductive)
= 0.8264 or θ = 34.26°,
Determine the complex power for hte given values in question
V_{rms} = 21∠20°V, V_{rms} = 21∠20°V, I_{rms} = 8.5∠50°A
S = V_{rms} I*_{rms} = (21∠20°)(8.5∠50°)
= 61+j167.7VA
Determine the complex power for hte given values in question.
V_{rms} = 120∠30°V, Z = 40 + j80Ω
= 72 + j144 VA
In a two element series circuit, the applied voltage and the resulting current are v(t) = 60 + 66 sin (1000t) V, i(t) = 2.3sin (1000t + 68.3) 3 A. The nature of the elements would be
A relay coil is connected to a 210 V, 50 Hz supply. If it has resistance of 30Ω and an inductance of 0.5 H, the apparent power is
Z= 30 + j(0.5)(2π)(50) = 30 + j157,
Apparent power = 275.6 VA
In the circuit shown in fig. power factor is
= 4  j6 = 7.21∠  56.31°, pf = cos 56.31° = 0.555 leading
The power factor seen by the voltage source is
I_{1} = 1∠36.9°
pf = cos 36.9° = 0.8 leading
The average power supplied by the dependent source is
(2∠  90°)4.8 = I_{x} (4.8 + j1.92) + 0.6I_{x}(8)
I_{x} = 5∠0°, V_{a} = 0.6 x 5 x 8 = 24∠0°,
In the circuit of fig. the maximum power absorbed by Z_{L} is
The value of the load impedance, that would absorbs the maximum average power is
21 docs222 tests

Use Code STAYHOME200 and get INR 200 additional OFF

Use Coupon Code 
21 docs222 tests









