The set of values of ‘a’ for which x2 + ax + sin–1 (x2 – 4x + 5) + cos–1 (x2 – 4x+5 ) = 0 has at least one solution is
The value of x for which sin [cot–1(1+x)] = cos(tan–1x)
sin[cot−1(x+1)] = cos(tan−1x)
⇒ sin[sin^−1(1/√1+(x+1)2)] = cos[ cos−1(1/√1+x2)]
⇒ 1/(√1+(x+1)2) = 1/(√1+x2)
⇒ 1/(x2+2x+2) = 1/(√x2+1)
⇒ x2+2x+2 = x2+1
⇒ 2x + 2 = 1
⇒ 2x = 1 − 2
⇒ 2x = −1
⇒ x = −1/2
The value of , if ∠C = 900 in triangle ABC, is
a2 + b2 = c2
tan-1 A + tan-1 B = tan(A + B)/(1 - AB)
=> tan-1 (a/(b+c)) + tan-1 (b/(c+a))
tan-1 [(a/(b+c) + b/(c+a))/(1 - ab/(b+c)(c+a))]
=> tan-1(ac + a2 + b2 + bc)/(bc + ab + c2 + ac - ab)
= tan-1 (ac + bc + a2 + b2)/(ac + bc + c2)
= tan-1 (ac + bc + c2)/(ac + bc + c2) As we know that {a2 + b2 = c2}
= tan-1(1)
= π/4
The complete solution set of the inequality [cot–1 x]2 – 6[cot–1 x] + 9 ≤0 is (where [ * ] denotes the greatest integer function)
If u = then
is equal to
The solution of the equation
sin-1(tanπ/4) - sin-1(√3/x) - /6 = 0
sin-1(1) - π/6 = sin-1(√3/x)
π/2 - π/6 = sin-1(√3/x)
2π/6 = sin-1(√3/x)
π/3 = sin-1(√3/x)
⇒. sin(π/3) = (√3/x)
⇒ (√3/2) = (√3/x)
⇒ (x)½ = 2
x = 4
The number of solution(s) of the equation, sin–1x + cos–1 (1 – x) = sin–1 (– x), is/are
sin-1 x + cos-1(1-x) = -sin-1 x
cos-1(1-x) = -2sin-1 x
(1-x) = cos(-2sin-1 x) ……………………….(1)
Let 2sin-1 x = t
x= sin t/2
Cos t = 1 - 2sin2 (t/2)
⇒ 1 - 2x^2
From eq(1), we get ⇒ 1- x= 1-2x2
2x2 - x = 0
x(2x - 1) = 0
x = 0,½
sin-1 + cos-1(1-x) = sin-1(-x)
0 + 0 + 0 = 0
π/6 + π/3 ⇒ π/2
sin(-x) = -π/6 not equal to π/2
x = 0, therefore it has 1 solution.
If sin-1 x + sin-1 y + sin-1z = , then
sin-1 x implies [-π/2, π/2]
= sin-1 x + sin-1 y + sin-1 z = 3π/2
sin-1x = π/2 sin-1y = π/2 sin-1 z = π/2
x = 1 y = 1 z = 1
(A) = 1+1+1 -(9/(1+1+1)) = 3 - 9/3
⇒ 3 - 3 = 0
(B) = 1+1+1-1-1-1 = 0
If α satisfies the inequation x2 – x – 2 > 0, then which of the following exists
α^2 - α -2 > 0
α^2 - 2α + α -2 > 0
α(α-2) +1(α-2) > 0
(α-2) (α+1) > 0
(-∞, -1) U (2,∞)
Therefore α exist for sec-1α and cosec-1 α
If ƒ(x) = -2x+8, then f-1(1) =
If the numerical value of tan (cos–1 (4/5) + tan–1 (2/3)) is a/b then
Therefore a + b = (17 + 6) = 23
a - b = (17-6) = 11
3b = a + 1
=> 3(6) = 18,
a + 1 => 17 + 1 = 18
The value of is
cos(−14π/5)=cos.14π/5=cos.4π/5
Hence, cos.1/2cos−1(cos.4π/5)
=cos.2π/5
If and
, then
Let f(x) = sin–1 x + cos–1 x. Then π/2 is equal to
We know that for the relation
If , then x may be
If 0 < x < 1, then is equal to
α, β and γ are three angles given by ,
and γ = cos-1 1/3. then
α = tan-1((2)½ - 1) = 2tan-1 tanπ/8
=2 * π/8
=> π/4 = cos-1(1/(2)½)
β = 3(π/4) - π/6 = 7π/12
Therefore, β > α
⅓ < 1/(2)½
=> cos-1(⅓) > cos-1(/(2)½) = π/4
So, γ > α
For the equation 2x = tan (2 tan–1 a) + 2 tan (tan–1 a + tan–1 a3), which of the following is invalid ?
2x = tan(2tan-1 a) + 2tan(tan-1 a + tan-1 a3)
= 2 tan(tan-1 a)/[1-{tan(tan-1 a)}2] + 2tan (tan-1 (a+a3)/(1-a*a3))
=2a/(1-a2) + 2(a+a3)/(1-a*a3)
= [2a + 2a3 + 2a + 2a3]/(1-a2)(1+a2)
= 4a/(1-a2)(1+a2)
= 4a(1+a2)/(1-a2)(1+a2)
2x = 4a/(1-a2)
2x(1-a2) = 4a
x = 2a/(1-a2)
=> a2x + 2a - x = 0
cos–1 x = tan–1 x then
Let cos−1 x = tan−1 x = y
⇒x=cosy and tany=x
Now,tany=x
siny/cosy = x
⇒(siny)/x=x
⇒siny=x2
siny=cos2y
⇒siny=(1−sin2y)
⇒sin2y+siny−1 = 0
By quadratic formula,
siny = −1±√(1)2−4×1×(−1))/(2 * 1)
⇒siny=(−1±√5)/2
∵siny∈[−1,1]
∴siny=(√5−1)/2
⇒sin(cos^−1x) = (√5−1)/2
The sum is equal to
Σ(n = 1) tan-1{4n/(n4 - 2n + 2)}
= tan-1{4n/(1 + (n2 - 1)2)}
= tan-1{4n/(1 + (n - 1)2(n + 1)2)}
= tan-1{4n/( (n + 1)2 - (n - 1)2)}
= Σ(n = 1) tan-1(n+1)2 - tan(n - 1)2
for(n = 1) tan-1 (4) - tan(0)2
for(n = 2) tan-1 (9) - tan(1)2
for(n = 3) tan-1 (16) - tan(2)2
for(n = n-2) tan-1(n-1)2 - tan(n - 3)2
for(n = n-1) tan-1(n)2 - tan(n - 2)2
for(n = n) tan-1(n+1)2 - tan(n - 1)2 we are left with = tan-1 n + tan1(n+1) + tan-1 1
= π/2 + π/2 - π/4
=> 3π/4
=> sec-1(-(2)^½)
Doc | 29 Pages
Video | 11:29 min
Video | 09:32 min
Video | 03:26 min
Test | 20 questions | 40 min
Test | 30 questions | 60 min
Test | 28 questions | 56 min
Test | 25 questions | 25 min
Test | 25 questions | 25 min