The value of is:
∫(-3 to 3) (x+1)dx
= ∫(-3 to -1) (x+1)dx + ∫(-1 to 3) (x+1) dx
= [x2 + x](-3 to -1) + [x2 + x](-1 to 3)
= [½ - 1 - (9/2 - 3)] + [9/2 + 3 - (½ - 1)]
= -[-4 + 2] + [4 + 4]
= -[-2] + [8]
= 10
Option d is correct, because it is the property of definite integral
∫02a f(x) dx = ∫0a f(x) dx + ∫0a f(2a – x) dx
∫02π|cos x|
[sin x]02π
[sin0 - sin2π]
0 - 0 = 0
Find the value of the integral.
The value of is:
I = ∫(1+cos2x)/2 dx
⇒ I = 1/2∫(1+cos2x)dx
⇒ I = 1/2∫1dx + 1/2∫cos2xdx
Using the integral formula ∫coskxdx = sinkx/k + c, we have
∫cos2 xdx = 1/2x + 1/2(sin2x)/2 + c
⇒ [1/2x + 1/4sin2x](-π/4 to π/4)
=> [-π/8 - π/8] + [1/4sin(-π/2) - 1/4sin(π/2)]
= - 2π/8 + [-¼ - ¼]
= -π/4 -½
= -(π/4 +½)
The value of is:
If f(2a – x) = f(x), then
For sin2(X), we will use the cos double angle formula:
cos(2X) = 1 - 2sin2(X)
The above formula can be rearranged to make sin2(X) the subject:
sin2(X) = 1/2(1 - cos(2X))
You can now rewrite the integration:
∫sin2(X)dX = ∫1/2(1 - cos(2X))dX
Because 1/2 is a constant, we can remove it from the integration to make the calculation simpler. We are now integrating:
1/2 x ∫(1 - cos(2X)) dX
= 1/2 x (X - 1/2sin(2X)) + C]-pi/4 to pi/4
∫sin2(X) dX = [1/2X - 1/4sin(2X)]-pi/4 to pi/4 + C
½[-pi/2] - 1/4sin(2(-pi/4)] - ½[pi/2] - 1/4sin(2(pi/4)]
= π/2
Doc | 1 Page
Doc | 22 Pages
Video | 09:16 min
Video | 10:03 min
Test | 10 questions | 10 min
Test | 10 questions | 10 min
Test | 5 questions | 10 min
Test | 20 questions | 60 min
Test | 10 questions | 30 min