Which of the following best describes Dynamic Programming?
What is the main advantage of using Dynamic Programming?
1 Crore+ students have signed up on EduRev. Have you? Download the App |
Which of the following problems can be efficiently solved using Dynamic Programming?
Which of the following is NOT a required characteristic for a problem to be solved using Dynamic Programming?
What is the output of the following code?
#include <iostream>
using namespace std;
int fibonacci(int n) {
int dp[n+1];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
int main() {
cout << fibonacci(6);
return 0;
}
What is the output of the following code?
#include <iostream>
using namespace std;
int knapsack(int W, int wt[], int val[], int n) {
int dp[n+1][W+1];
for (int i = 0; i <= n; i++) {
for (int w = 0; w <= W; w++) {
if (i == 0 || w == 0)
dp[i][w] = 0;
else if (wt[i-1] <= w)
dp[i][w] = max(val[i-1] + dp[i-1][w-wt[i-1]], dp[i-1][w]);
else
dp[i][w] = dp[i-1][w];
}
}
return dp[n][W];
}
int main() {
int val[] = {60, 100, 120};
int wt[] = {10, 20, 30};
int W = 50;
int n = sizeof(val)/sizeof(val[0]);
cout << knapsack(W, wt, val, n);
return 0;
}
What is the output of the following code?
#include <iostream>
using namespace std;
int coinChange(int coins[], int n, int amount) {
int dp[amount + 1];
dp[0] = 0;
for (int i = 1; i <= amount; i++) {
dp[i] = INT_MAX;
for (int j = 0; j < n; j++) {
if (coins[j] <= i)
dp[i] = min(dp[i], dp[i - coins[j]] + 1);
}
}
return dp[amount] == INT_MAX ? -1 : dp[amount];
}
int main() {
int coins[] = {1, 2, 5};
int n = sizeof(coins)/sizeof(coins[0]);
int amount = 11;
cout << coinChange(coins, n, amount);
return 0;
}
What is the output of the following code?
#include <iostream>
using namespace std;
int longestIncreasingSubsequence(int arr[], int n) {
int dp[n];
for (int i = 0; i < n; i++) {
dp[i] = 1;
for (int j = 0; j < i; j++) {
if (arr[i] > arr[j])
dp[i] = max(dp[i], dp[j] + 1);
}
}
int maxLen = 0;
for (int i = 0; i < n; i++) {
if (dp[i] > maxLen)
maxLen = dp[i];
}
return maxLen;
}
int main() {
int arr[] = {3, 10, 2, 1, 20};
int n = sizeof(arr)/sizeof(arr[0]);
cout << longestIncreasingSubsequence(arr, n);
return 0;
}
What is the output of the following code?
#include <iostream>
using namespace std;
int editDistance(string word1, string word2) {
int m = word1.length();
int n = word2.length();
int dp[m+1][n+1];
for (int i = 0; i <= m; i++) {
for (int j = 0; j <= n; j++) {
if (i == 0)
dp[i][j] = j;
else if (j == 0)
dp[i][j] = i;
else if (word1[i-1] == word2[j-1])
dp[i][j] = dp[i-1][j-1];
else
dp[i][j] = 1 + min(dp[i][j-1], min(dp[i-1][j], dp[i-1][j-1]));
}
}
return dp[m][n];
}
int main() {
string word1 = "intention";
string word2 = "execution";
cout << editDistance(word1, word2);
return 0;
}
What is the output of the following code?
```cpp
#include <iostream>
using namespace std;
int eggDrop(int eggs, int floors) {
int dp[eggs + 1][floors + 1];
for (int i = 1; i <= eggs; i++) {
dp[i][1] = 1;
dp[i][0] = 0;
}
for (int j = 1; j <= floors; j++)
dp[1][j] = j;
for (int i = 2; i <= eggs; i++) {
for (int j = 2; j <= floors; j++) {
dp[i][j] = INT_MAX;
for (int x = 1; x <= j; x++) {
int res = 1 + max(dp[i-1][x-1], dp[i][j-x]);
dp[i][j] = min(dp[i][j], res);
}
}
}
return dp[eggs][floors];
}
int main() {
int eggs = 2;
int floors = 10;
cout << eggDrop(eggs, floors);
return 0;
}
```
What is the output of the following code?
```cpp
#include <iostream>
using namespace std;
int lps(string str) {
int n = str.length();
int dp[n][n];
for (int i = 0; i < n; i++)
dp[i][i] = 1;
for (int cl = 2; cl <= n; cl++) {
for (int i = 0; i < n - cl + 1; i++) {
int j = i + cl - 1;
if (str[i] == str[j] && cl == 2)
dp[i][j] = 2;
else if (str[i] == str[j])
dp[i][j] = dp[i+1][j-1] + 2;
else
dp[i][j] = max(dp[i][j-1], dp[i+1][j]);
}
}
return dp[0][n-1];
}
int main() {
string str = "BBABCBCAB";
cout << lps(str);
return 0;
}
```
What is the output of the following code?
```cpp
#include <iostream>
using namespace std;
int maxSumSubsequence(int arr[], int n) {
int dp[n];
for (int i = 0; i < n; i++) {
dp[i] = arr[i];
for (int j = 0; j < i; j++) {
if (arr[i] > arr[j] && dp[i] < dp[j] + arr[i])
dp[i] = dp[j] + arr[i];
}
}
int maxSum = 0;
for (int i = 0; i < n; i++) {
if (dp[i] > maxSum)
maxSum = dp[i];
}
return maxSum;
}
int main() {
int arr[] = {1, 101, 2, 3, 100};
int n = sizeof(arr)/sizeof(arr[0]);
cout << maxSumSubsequence(arr, n);
return 0;
}
```
What is the output of the following code?
```cpp
#include <iostream>
using namespace std;
int coinChange(int coins[], int n, int amount) {
int dp[amount + 1];
dp[0] = 1;
for (int i = 0; i < n; i++) {
for (int j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
int main() {
int coins[] = {1, 2, 5};
int n = sizeof(coins)/sizeof(coins[0]);
int amount = 5;
cout << coinChange(coins, n, amount);
return 0;
}
```
What is the output of the following code?
```cpp
#include <iostream>
using namespace std;
int maxSubarraySum(int arr[], int n) {
int maxSum = arr[0];
int currMax = arr[0];
for (int i = 1; i < n; i++) {
currMax = max(arr[i], currMax + arr[i]);
maxSum = max(maxSum, currMax);
}
return maxSum;
}
int main() {
int arr[] = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
int n = sizeof(arr)/sizeof(arr[0]);
cout << maxSubarraySum(arr, n);
return 0;
}
```
153 videos|115 docs|24 tests
|
153 videos|115 docs|24 tests
|