1 Crore+ students have signed up on EduRev. Have you? Download the App |
In a binary search tree, the elements are stored in such a way that:
Which of the following traversal techniques visits the left subtree, then the root, and finally the right subtree?
Which of the following operations is not typically performed on a binary search tree?
Code and Output:
#include <iostream>
using namespace std;
struct Node {
int data;
Node* left;
Node* right;
};
int main() {
Node* root = new Node();
root->data = 10;
root->left = new Node();
root->left->data = 20;
root->right = new Node();
root->right->data = 30;
cout << root->left->data << endl;
return 0;
}
What will be the output of the above code?
Code and Output:
#include <iostream>
using namespace std;
struct Node {
int data;
Node* left;
Node* right;
};
void preorderTraversal(Node* root) {
if (root == NULL)
return;
cout << root->data << " ";
preorderTraversal(root->left);
preorderTraversal(root->right);
}
int main() {
Node* root = new Node();
root->data = 10;
root->left = new Node();
root->left->data = 20;
root->right = new Node();
root->right->data = 30;
preorderTraversal(root);
return 0;
}
What will be the output of the above code?
Code and Output:
#include <iostream>
using namespace std;
struct Node {
int data;
Node* left;
Node* right;
};
Node* insert(Node* root, int key) {
if (root == NULL) {
Node* newNode = new Node();
newNode->data = key;
newNode->left = NULL;
newNode->right = NULL;
return newNode;
}
if (key < root->data)
root->left = insert(root->left, key);
else if (key > root->data)
root->right = insert(root->right, key);
return root;
}
int main() {
Node* root = NULL;
root = insert(root, 10);
root = insert(root, 20);
root = insert(root, 5);
root = insert(root, 15);
cout << root->left->right->data << endl;
return 0;
}
What will be the output of the above code?
Code and Output:
#include <iostream>
using namespace std;
struct Node {
int data;
Node* left;
Node* right;
};
int sumOfLeafNodes(Node* root) {
if (root == NULL)
return 0;
if (root->left == NULL && root->right == NULL)
return root->data;
return sumOfLeafNodes(root->left) + sumOfLeafNodes(root->right);
}
int main() {
Node* root = new Node();
root->data = 10;
root->left = new Node();
root->left->data = 20;
root->right = new Node();
root->right->data = 30;
root->left->left = new Node();
root->left->left->data = 40;
root->left->right = new Node();
root->left->right->data = 50;
cout << sumOfLeafNodes(root) << endl;
return 0;
}
What will be the output of the above code?
Code and Output (HOTS):
#include <iostream>
using namespace std;
struct Node {
int data;
Node* left;
Node* right;
};
bool isBinarySearchTree(Node* root, int minValue, int maxValue) {
if (root == NULL)
return true;
if (root->data < minValue || root->data > maxValue)
return false;
return isBinarySearchTree(root->left, minValue, root->data - 1) &&
isBinarySearchTree(root->right, root->data + 1, maxValue);
}
int main() {
Node* root = new Node();
root->data = 10;
root->left = new Node();
root->left->data = 5;
root->right = new Node();
root->right->data = 15;
root->right->left = new Node();
root->right->left->data = 12;
root->right->right = new Node();
root->right->right->data = 18;
bool isBST = isBinarySearchTree(root, INT_MIN, INT_MAX);
cout << isBST << endl;
return 0;
}
What will be the output of the above code?
Code and Output (HOTS):
#include <iostream>
using namespace std;
struct Node {
int data;
Node* left;
Node* right;
};
void printPathsToLeaf(Node* root, int path[], int pathLen) {
if (root == NULL)
return;
path[pathLen] = root->data;
pathLen++;
if (root->left == NULL && root->right == NULL) {
for (int i = 0; i < pathLen; i++)
cout << path[i] << " ";
cout << endl;
} else {
printPathsToLeaf(root->left, path, pathLen);
printPathsToLeaf(root->right, path, pathLen);
}
}
int main() {
Node* root = new Node();
root->data = 10;
root->left = new Node();
root->left->data = 20;
root->right = new Node();
root->right->data = 30;
root->left->left = new Node();
root->left->left->data = 40;
root->left->right = new Node();
root->left->right->data = 50;
int path[100];
printPathsToLeaf(root, path, 0);
return 0;
}
What will be the output of the above code?
#include <iostream>
using namespace std;
struct Node {
int data;
Node* left;
Node* right;
};
Node* findLCA(Node* root, int n1, int n2) {
if (root == NULL)
return NULL;
if (root->data == n1 || root->data == n2)
return root;
Node* leftLCA = findLCA(root->left, n1, n2);
Node* rightLCA = findLCA(root->right, n1, n2);
if (leftLCA && rightLCA)
return root;
return (leftLCA != NULL) ? leftLCA : rightLCA;
}
int main() {
Node* root = new Node();
root->data = 10;
root->left = new Node();
root->left->data = 20;
root->right = new Node();
root->right->data = 30;
root->left->left = new Node();
root->left->left->data = 40;
root->left->right = new Node();
root->left->right->data = 50;
root->right->left = new Node();
root->right->left->data = 60;
root->right->right = new Node();
root->right->right->data = 70;
Node* lca = findLCA(root, 40, 70);
cout << lca->data << endl;
return 0;
}
What will be the output of the above code?
#include <iostream>
using namespace std;
struct Node {
int data;
Node* left;
Node* right;
};
void convertToMirror(Node* root) {
if (root == NULL)
return;
convertToMirror(root->left);
convertToMirror(root->right);
Node* temp = root->left;
root->left = root->right;
root->right = temp;
}
int main() {
Node* root = new Node();
root->data = 10;
root->left = new Node();
root->left->data = 20;
root->right = new Node();
root->right->data = 30;
root->left->left = new Node();
root->left->left->data = 40;
root->left->right = new Node();
root->left->right->data = 50;
convertToMirror(root);
cout << root->left->data << endl;
return 0;
}
What will be the output of the above code?
Which traversal technique can be used to obtain a sorted sequence of elements from a binary search tree?
Which of the following statements about binary search trees (BSTs) is correct?
153 videos|115 docs|24 tests
|
153 videos|115 docs|24 tests
|