JEE Exam  >  JEE Tests  >  Mathematics (Maths) Class 12  >  Test: Skew Lines - JEE MCQ

Test: Skew Lines - JEE MCQ


Test Description

10 Questions MCQ Test Mathematics (Maths) Class 12 - Test: Skew Lines

Test: Skew Lines for JEE 2024 is part of Mathematics (Maths) Class 12 preparation. The Test: Skew Lines questions and answers have been prepared according to the JEE exam syllabus.The Test: Skew Lines MCQs are made for JEE 2024 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Test: Skew Lines below.
Solutions of Test: Skew Lines questions in English are available as part of our Mathematics (Maths) Class 12 for JEE & Test: Skew Lines solutions in Hindi for Mathematics (Maths) Class 12 course. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free. Attempt Test: Skew Lines | 10 questions in 10 minutes | Mock test for JEE preparation | Free important questions MCQ to study Mathematics (Maths) Class 12 for JEE Exam | Download free PDF with solutions
Test: Skew Lines - Question 1

Two lines whose direction ratios are a1, b1, c1 and a2, b2, c2 are parallel, if

Test: Skew Lines - Question 2

For which value of a lines  and  are perpendicular?

Detailed Solution for Test: Skew Lines - Question 2

1 Crore+ students have signed up on EduRev. Have you? Download the App
Test: Skew Lines - Question 3

The shortest distance between the lines whose equations are  and  is:

Test: Skew Lines - Question 4

Two lines whose direction ratios are a1,b1,c1 and a2,b2,c2 are perpendicular, if

Test: Skew Lines - Question 5

The shortest distance between the parallel lines whose equations are and 

Test: Skew Lines - Question 6

The angle between the pair of lines given byand  is:

Test: Skew Lines - Question 7

The angle between the lines x = 2y = – 3z and – 4x = 6y = – z is:​

Detailed Solution for Test: Skew Lines - Question 7

x = 2y = -3z     -4x = 6y = -z
x/1 = y/(½) = z(-⅓)                   x/(-¼) = y/(⅙) = z/(-1)
Cosθ = [(a1a2 + b1b2 + c1c2)/(a1 + b1 + c1)½ * (a2 + b2 + c2)½]
Cosθ ={[(1*(-¼)) + (½)(⅙) + (-⅓)(-1)]/[(1)2 + (½)2 + (-⅓)2]1/2 * [(-¼)2 + (⅙)2 + (-1)2]1/2}
= {[(-¼ + 1/12  - ⅓)]/[2 + 1 - ⅔]1/2 * [ -½ + ⅓ -½]½}
Cosθ = 0
θ = 90deg

Test: Skew Lines - Question 8

The angle between the lines whose direction cosines are given by the equations 3l + m + 5n = 0, 6nm - 2nl + 5lm = 0 is:

Detailed Solution for Test: Skew Lines - Question 8

3l + m + 5n = 0
m = - (3l + 5n) -----------(1)
6mn - 2nl + 5lm = 0 ----------(2)
Substitute m=-(3l+5n) in eq(2)
⇒ 6[- (3l + 5n)]n - 2nl + 5l[- (3l + 5n)] = 0
⇒( -18ln - 30n)n-2nl-15l^2+25ln=0
⇒ l(l + 2n) + n(l + 2n) = 0
⇒ (l + n) (l + 2n) = 0
∴ l = - n and l = -2n
( l / -1 ) = ( n / 1) and ( l / -2) = ( n / 1) -------(3)
Substitute l in equation 1, we get
m = - (3l + 5n)
m = -2n and m = n
( m / -2) = ( n / 1) and ( m / 1) = ( n / 1 ) --------(4)
From ( 3) and (4) we get
( l / -1 ) = ( m / -2) = ( n / 1),
( l / -2) = ( m / 1) = ( n / 1 )
l : m : n = -1 : -2 : 1
l : m : n = -2 : 1 : 1
i.e D.r's ( -1, -2, 1) and ( -2 , 1 , 1)
Angle between the lines whose direction cosines are
Cos θ = ( -1 × -2 + -2×1 + 1×1) / √ ((-1)^2+(-2)2+12))*√((-2)2+12+12))
Cos θ = 1 / √6 √6
Cos θ = 1 / 6
∴ θ = cos inverse of (1/6)
∴Angle between the lines whose direction cosines is cos-1(1/6)

Test: Skew Lines - Question 9

The angle between the lines  and  is:

Test: Skew Lines - Question 10

The length of the shortest distance between the lines  and  is:

Detailed Solution for Test: Skew Lines - Question 10

let P and Q be the points on the given lines, respectively. then the general coordinates of P and Q are: 
P(k+3, -2k+5, k+7) and Q (7m-1, -6m-1, m-1)
therefore the direction ratios of PQ are (7m-k-4,-6m+2k-6, m-k-8)
now PQ will be the shortest distance if it is perpendicular to both the given lines, therefore by the condition of perpendicularity,
1(7m-k-4) -2(-6m+2k-6) + 1(m-k-8) = 0  (1)
7(7m-k-4) -6(-6m+2k-6) + 1(m-k-8) = 0  (2)
now solving (1) and (2),
m=0 and k = 0
hence the points are P(3,5,7) and Q (-1,-1,-1), therefore the shortest distance between the lines
PQ = sqrt((3+1)2+(5+1)2 +(7+1)2
= sqrt(16+36+64) = sqrt(116) 
= 2sqrt(29)

204 videos|290 docs|139 tests
Information about Test: Skew Lines Page
In this test you can find the Exam questions for Test: Skew Lines solved & explained in the simplest way possible. Besides giving Questions and answers for Test: Skew Lines , EduRev gives you an ample number of Online tests for practice

Top Courses for JEE

204 videos|290 docs|139 tests
Download as PDF

Top Courses for JEE