Class 10 Exam  >  Class 10 Tests  >  Olympiad Preparation for Class 10  >  Math Olympiad Test: Trigonometry- 4 - Class 10 MCQ

Math Olympiad Test: Trigonometry- 4 - Class 10 MCQ


Test Description

10 Questions MCQ Test Olympiad Preparation for Class 10 - Math Olympiad Test: Trigonometry- 4

Math Olympiad Test: Trigonometry- 4 for Class 10 2024 is part of Olympiad Preparation for Class 10 preparation. The Math Olympiad Test: Trigonometry- 4 questions and answers have been prepared according to the Class 10 exam syllabus.The Math Olympiad Test: Trigonometry- 4 MCQs are made for Class 10 2024 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Math Olympiad Test: Trigonometry- 4 below.
Solutions of Math Olympiad Test: Trigonometry- 4 questions in English are available as part of our Olympiad Preparation for Class 10 for Class 10 & Math Olympiad Test: Trigonometry- 4 solutions in Hindi for Olympiad Preparation for Class 10 course. Download more important topics, notes, lectures and mock test series for Class 10 Exam by signing up for free. Attempt Math Olympiad Test: Trigonometry- 4 | 10 questions in 10 minutes | Mock test for Class 10 preparation | Free important questions MCQ to study Olympiad Preparation for Class 10 for Class 10 Exam | Download free PDF with solutions
Math Olympiad Test: Trigonometry- 4 - Question 1

If X sin3θ + Y cos3θ = sinθ cosθ and Xsinθ = Ycosθ, then 

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 1

X sin3θ + Y cos3θ = sinθ cosθ ... (i)
X sinθ = Y cosθ ... (ii)
Using (ii) in (i), we get
⇒ Y cosqsin2θ + Y cos3θ = sinθcosθ
⇒ Y sin2θ + Y cos2θ = sinθ ⇒ Y = sinθ
∴ X sinθ = sinθ × cosθ ⇒ X = cosθ
∴ X2 + Y2 = 1

Math Olympiad Test: Trigonometry- 4 - Question 2

If  then _________.

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 2

 ... (i)
 ... (ii)
Squaring and adding (i) and (ii), we get
 

1 Crore+ students have signed up on EduRev. Have you? Download the App
Math Olympiad Test: Trigonometry- 4 - Question 3

If sin x + sin2x = 1, then cos8 x + 2cos6x + cos4x =_____.

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 3

sinx + sin2x = 1 (Given)
⇒ sinx = 1 – sin2 x ⇒ sinx = cos2 x
Now, cos8x + 2 cos6x + cos4x = sin4x + 2 sin3x + sin2x
= (sin2x + sinx)2 = 1 [∵ (sinx + sin2x) = 1]

Math Olympiad Test: Trigonometry- 4 - Question 4

If cotθ = 15/8, then evaluate 

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 4



Math Olympiad Test: Trigonometry- 4 - Question 5

If cosecθ – sinθ = l and sec θ– cosθ = m, then l2m2(l2 + m2 + 3) = ________ .

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 5

We have, l2m2 (l2 + m2 + 3)
= (cosecθ – sinθ)2 (secθ – cosθ)2 {(cosecθ – sinθ)2 + (secθ – cosθ)2 + 3}



= cos6θ + sin6θ + 3 cos2θsin2θ
= {(cos2θ)3 + (sin2θ)3 + 3 cos2θsin2θ
= {(cos2θ + sin2θ)3 – 3 cos2θ sin2θ (cos2θ + sin2θ)} + 3 sin2θcos2θ
= {1 – 3 cos2 sin2θ} + 3 cos2θ sin2θ = 1

Math Olympiad Test: Trigonometry- 4 - Question 6

In a ΔABC, it is given that ∠C = 90° and tan A = 1/√3, find the value of  (sinA cosB + cosA sinB).

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 6

Consider ΔABC in which ∠C = 90° and tan A = 1/√3.
Let BC = x.
Then, AC = √3x
By Pythagoras' theorem, we have,
AB2 = AC2 + BC2 = (√3x)2 + x2 = 2x

 and sin B = 
∴ (sinA cosB + cosA sinB) 

Math Olympiad Test: Trigonometry- 4 - Question 7

Which of the following is true?
(a) cosθsinθ - 
(b) If A  and B are complementary angles, then sin A = 

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 7

(a) cosθ sinθ –  
= cosθ sinθ – sin3θ cosθ – cos3θ sinθ
= cosθ sinθ – cosθ sinθ (sin2θ + cos2θ)
= cosθ sinθ – cosθ sinθ = 0
(b) A and B are complementary angles
⇒ A + B = 90° ⇒ A = 90° – B
Now, taking R.H.S. we get 


= cosB = cos (90° – A) = sinA

Math Olympiad Test: Trigonometry- 4 - Question 8

Fill in the blanks.
(i) If x =  a cos3θ , y = b sin3θ then 
(ii) If x  = a secθ cosφ, y = b secθ sinφ and z = c tanφ, then  
(iii) If cosA + cos2A = 1, then sin2A + sin4

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 8

(i) We have, x = a cos3θ and y = b sin3θ
∴ 

Hence,  cos2θ + sin2θ = 1
∴ P = 1.
(ii) We have, x = a secθcosφ
y = b secθsinφ and z = c tanθ

Hence,
(secθ cosφ)2 + (secθ sinφ)2 – (tanθ)2
= sec2θ – tan2θ = 1 + tan2θ – tan2θ = 1
∴ Q = 1.
(iii) cos A + cos2 A = 1 (Given) ...(i)
∴ cos A = 1 – cos2 A = sin2 A
∴ sin2 A + sin4 A = cos A + cos2 A = 1
∴ R = 1.

Math Olympiad Test: Trigonometry- 4 - Question 9

Find the value of  if 1 + cot2θ = 

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 9

We have, 1+ cot2θ = 
cosec2θ = 

⇒ cosecθ = 2

Now, 

Math Olympiad Test: Trigonometry- 4 - Question 10

Which of the following is CORRECT statements?
(i) 3(sinθ – cosθ)4 + 6(sinθ + cosθ)2 + 4(sin6θ + cos6θ) is independent of θ.
(ii) If cosecθ – sinθ = a3, secθ – cosθ = b3, then a2b2(a2 + b2) = 2

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 10

(i) We know, 3(sinθ – cosθ)4 = 3((sinθ – cosθ)2)2
= 3(12 + 4sin2θcos2θ – 4sinθcosθ) ...(i)
and, 6(sinθ + cosθ)2 = 6 + 12sinθcosθ ...(ii)
Also, 4(sin6θ + cos6θ) = 4((sin2θ)3 + (cos2θ)3) = 4(1) – 12sin2θcos2θ ...(iii)
Adding (i), (ii) and (iii), we get
3 + 12sin2θcos2θ – 12 sinθcosθ + 6+ 12 sinθ cosθ + 4 – 12 sin2θcos2θ
= 3 + 6 + 4 = 13 and 13 is independent of q.
(ii) We have,
cosecθ – sinθ = 
⇒ 
Similarly, secθ – cosθ = 

 

13 videos|44 docs|187 tests
Information about Math Olympiad Test: Trigonometry- 4 Page
In this test you can find the Exam questions for Math Olympiad Test: Trigonometry- 4 solved & explained in the simplest way possible. Besides giving Questions and answers for Math Olympiad Test: Trigonometry- 4, EduRev gives you an ample number of Online tests for practice

Top Courses for Class 10

13 videos|44 docs|187 tests
Download as PDF

Top Courses for Class 10