Commerce Exam  >  Commerce Tests  >  Mathematics (Maths) Class 11  >  Test: Measurement of Angles - Commerce MCQ

Test: Measurement of Angles - Commerce MCQ


Test Description

20 Questions MCQ Test Mathematics (Maths) Class 11 - Test: Measurement of Angles

Test: Measurement of Angles for Commerce 2024 is part of Mathematics (Maths) Class 11 preparation. The Test: Measurement of Angles questions and answers have been prepared according to the Commerce exam syllabus.The Test: Measurement of Angles MCQs are made for Commerce 2024 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Test: Measurement of Angles below.
Solutions of Test: Measurement of Angles questions in English are available as part of our Mathematics (Maths) Class 11 for Commerce & Test: Measurement of Angles solutions in Hindi for Mathematics (Maths) Class 11 course. Download more important topics, notes, lectures and mock test series for Commerce Exam by signing up for free. Attempt Test: Measurement of Angles | 20 questions in 20 minutes | Mock test for Commerce preparation | Free important questions MCQ to study Mathematics (Maths) Class 11 for Commerce Exam | Download free PDF with solutions
Test: Measurement of Angles - Question 1

What is the degree measure of the angle A = -15π/2? 

Test: Measurement of Angles - Question 2

A pendulum 36 cm long oscillates through an angle of 10 degrees. Find the length of the path described by its extremity.

Detailed Solution for Test: Measurement of Angles - Question 2


= 6.280 cm

1 Crore+ students have signed up on EduRev. Have you? Download the App
Test: Measurement of Angles - Question 3

In the fourth quadrant the value of cosine function

Detailed Solution for Test: Measurement of Angles - Question 3

As the angle increases from 270° to 360°, the sine increases from -1 to 0. As the angle increases from 270° to 360°, and the value of cos 270° = 0
and cos 360° = 1
So, the cosine increases from 0 to +1.

Test: Measurement of Angles - Question 4

A wire of length 15 cm is bent to form an arc of a circle with radius 6 cm. Find in radians the angle subtended at the centre.

Detailed Solution for Test: Measurement of Angles - Question 4

Length of arc = 15 cm
Radius: R = 6 cm
Arc length = R*θ
(θ is the angle subtended by the arc)
15 = 6*θ
θ = 5/2 radians

Test: Measurement of Angles - Question 5

The degree measure of the radian angle 5π/4 is

Detailed Solution for Test: Measurement of Angles - Question 5

Test: Measurement of Angles - Question 6

In the third quadrant the value of the sine function

Detailed Solution for Test: Measurement of Angles - Question 6

In The Third Quadrant
As the angle increases from 180° to 270°, the sine increases in magnitude but is now negative, so, the sine decreases from 0 to -1.

Test: Measurement of Angles - Question 7

The value of cosx in the second quadrant

Detailed Solution for Test: Measurement of Angles - Question 7

Second quadrant is from 90° to 180°
As we know that cos90° = 0, cos180° = -1
So the value of cos is decreasing from 0 to -1

Test: Measurement of Angles - Question 8

What is the radius of the circle in which a central angle of 60° intercepts an arc length of 48.4 cm?

Detailed Solution for Test: Measurement of Angles - Question 8

Test: Measurement of Angles - Question 9

A cyclist travels at the rate of 14.4 km/hr and the radius of the wheel is 35 cm. What is the measure of the angle in radian through which a spoke of the wheel will turn in one second?

Detailed Solution for Test: Measurement of Angles - Question 9

First of all change the speed into m/s. You will get 4 m/s. It means that the wheel moves 4 metres a second i.e arc subtended by the wheel per second is 4m. Now, as we know that angle= arc÷radius. So, divide 4m by 0.35m ( convert 35 cm into metre or 4m into cm, as you wish). So, angle= (400÷35) radians = 80/7 radians. So, the answer is b).

Test: Measurement of Angles - Question 10

What is the approximate value of 1 radian in degree measure?

Detailed Solution for Test: Measurement of Angles - Question 10

The length of an arc of a unit circle is numerically equal to the measurement in radians of the angle that it subtends; one radian is just under 57.3 degrees.

Test: Measurement of Angles - Question 11

Convert 135° into radians?

Detailed Solution for Test: Measurement of Angles - Question 11

1ο= π\180
so 135ο 
135×π\180
=3π\4

Test: Measurement of Angles - Question 12

A train is travelling on a curve of 350 m radius at 7 Km/hr. Through what angle will it turn in one minute?

Detailed Solution for Test: Measurement of Angles - Question 12

length of arc = 350m
Speed = 7km/hr
In one minute = (7*5/18*60)
=> (35*20)/6
= length of arc/radius
θ = (35*20)/(6*350)
θ = 1/3 radian

Test: Measurement of Angles - Question 13

Find the central angle of the circle whose diameter is 20 cm subtended by an arc of length 15.4 cm.

Detailed Solution for Test: Measurement of Angles - Question 13

Test: Measurement of Angles - Question 14

Find the length of arc of the circle whose diameter is 14 m and which subtends an angle of 1° at the centre.

Detailed Solution for Test: Measurement of Angles - Question 14

 r =7 m, θ = 1°
Length subtended by Arc = (2πr/360o)×θ
= (2×22×7×1)/(7×360)
​= 0.12m

Test: Measurement of Angles - Question 15

What is the angle in degrees swept by the minute hand of a clock between 9.00 a.m. and 9.35 a.m.?

Detailed Solution for Test: Measurement of Angles - Question 15

We know angle described by minute hand in 60 mins = 360°
Angle described by the minute hand in one minute = 360°/60 = 6°
Time interval between 9AM to 9:35 AM = 35 min

Test: Measurement of Angles - Question 16

What will be the angle in degree if the value of the angle in radians is 5π/12

Detailed Solution for Test: Measurement of Angles - Question 16
5π\12×180/π
=900/12
=75 degree
Test: Measurement of Angles - Question 17

A wheel makes 360 revolutions in 1 minute. Through how many radians does it turn in 3 seconds?

Detailed Solution for Test: Measurement of Angles - Question 17

Number of revolutions made by the wheel in 1 minute = 360
∴ Number of revolutions made by the wheel in 1 second = 360/(60) = 6
In 3 seconds = (6*3) = 18
In one complete revolution, the wheel turns an angle of 2π radian.
Hence, in 6 complete revolutions, it will turn an angle of 18 × 2π radian, i.e.,
36 π radian
Thus, in one second, the wheel turns an angle of 36π radian.

Test: Measurement of Angles - Question 18

What is the length of arc of a circle whose radius is 14 cm and which subtends an angle of 135° at the centre?

Detailed Solution for Test: Measurement of Angles - Question 18

Radius of circle =14cm
An angle = 135o
Length of arc = ?
We know that, Length of arc = Radius × Angle
= 14 * 3π/4
= 14 * (3*22)/(7*4)
= 33cm

Test: Measurement of Angles - Question 19

An object is moving on the circle of radius 7 cm in clockwise direction with a speed of 10 cm/s. find the angle in radians covered by it in 10 sec when it starts at 0 degree.

Detailed Solution for Test: Measurement of Angles - Question 19


Test: Measurement of Angles - Question 20

A cow is tethered to a corner of a field with a rope of length 7 m. If she grazes on the length of 210 m, what is the angle through which the rope moves?

Detailed Solution for Test: Measurement of Angles - Question 20

We know that in a circle of radius r units, if an arc of length l units subtends an angle theta radian at the centre, then θ = l/ r.
Here, r = 7 m (length of rope will be equal to radius) and l = 210 m (length of arc will be the length which the cow grazed)
Thus, θ = 210o/ 7 
= 30o

75 videos|238 docs|91 tests
Information about Test: Measurement of Angles Page
In this test you can find the Exam questions for Test: Measurement of Angles solved & explained in the simplest way possible. Besides giving Questions and answers for Test: Measurement of Angles, EduRev gives you an ample number of Online tests for practice

Top Courses for Commerce

75 videos|238 docs|91 tests
Download as PDF

Top Courses for Commerce