Civil Engineering (CE) Exam  >  Civil Engineering (CE) Notes  >  Structural Analysis  >  The Direct Stiffness Method: Temperature Changes & Fabrication Errors in Truss Analysis - 2

The Direct Stiffness Method: Temperature Changes & Fabrication Errors in Truss Analysis - 2 | Structural Analysis - Civil Engineering (CE) PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


                                                         
411
3
33
0000
01 0 1
15 10 2 10
0000 3 x 10 10
010 1
k
-
? ?
? ?
-
×××
? ?
?? =
??
? ? ×
? ?
-
? ?
    (7)  
 
The global stiffness matrix is of the order 8 8 × ,assembling the three member 
stiffness matrices, one gets 
 
[]
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
=
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
10
3
k  (8) 
 
Writing the load displacement equation for the truss 
 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
p
p
p
p
p
p
p
p
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
10
3
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
u
u
u
u
u
u
u
u
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
0
0
1
1
0
0
1
1
640           
(9) 
 
In the present case, the displacements 
1
u and 
2
u are not known. All other 
displacements are zero. Also 0
2 1
= = p p (as no joint loads are applied).Thus, 
 
Page 2


                                                         
411
3
33
0000
01 0 1
15 10 2 10
0000 3 x 10 10
010 1
k
-
? ?
? ?
-
×××
? ?
?? =
??
? ? ×
? ?
-
? ?
    (7)  
 
The global stiffness matrix is of the order 8 8 × ,assembling the three member 
stiffness matrices, one gets 
 
[]
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
=
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
10
3
k  (8) 
 
Writing the load displacement equation for the truss 
 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
p
p
p
p
p
p
p
p
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
10
3
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
u
u
u
u
u
u
u
u
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
0
0
1
1
0
0
1
1
640           
(9) 
 
In the present case, the displacements 
1
u and 
2
u are not known. All other 
displacements are zero. Also 0
2 1
= = p p (as no joint loads are applied).Thus, 
 
                                                         
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
p
p
p
p
p
p
p
p
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
=
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
u
u
u
u
u
u
u
u
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
0
0
1
1
0
0
1
1
640  (10) 
 
Thus unknown displacements are 
 
1
1
3
2
147.14 47.14 0 1
1
(150.82 )
47.14 147.14 0 1 10
u
u
-
- ?????? ??
=-
?? ? ? ? ?
??
-
???? ?? ??
    (11) 
 
4
1
4
2
7.763 10
7.763 10
um
um
-
-
=×
=×
 
 
Now reactions are calculated as 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
0
0
1
1
0
0
640
0
0
0
0
0
0
0 0 0 0 0 0
0 100 0 0 0 0
0 0 14 . 47 14 . 47 0 0
0 0 14 . 47 14 . 47 0 0
0 0 0 0 100 0
0 0 0 0 0 0
0 0
0 100
14 . 47 14 . 47
14 . 47 14 . 47
100 0
0 0
10
2
1 3
8
7
6
5
4
3
u
u
p
p
p
p
p
p
 
 
3
4
5
6
7
8
0
77.63
77.63
77.63
77.63
0
p
p
p
p
p
p
??
??
??
??
-
??
??
??
??
?? ? ?
=
?? ? ?
?? ? ?
?? ? ?
-
?? ? ?
??
????
??
kN      (12) 
 
Page 3


                                                         
411
3
33
0000
01 0 1
15 10 2 10
0000 3 x 10 10
010 1
k
-
? ?
? ?
-
×××
? ?
?? =
??
? ? ×
? ?
-
? ?
    (7)  
 
The global stiffness matrix is of the order 8 8 × ,assembling the three member 
stiffness matrices, one gets 
 
[]
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
=
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
10
3
k  (8) 
 
Writing the load displacement equation for the truss 
 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
p
p
p
p
p
p
p
p
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
10
3
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
u
u
u
u
u
u
u
u
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
0
0
1
1
0
0
1
1
640           
(9) 
 
In the present case, the displacements 
1
u and 
2
u are not known. All other 
displacements are zero. Also 0
2 1
= = p p (as no joint loads are applied).Thus, 
 
                                                         
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
p
p
p
p
p
p
p
p
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
=
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
u
u
u
u
u
u
u
u
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
0
0
1
1
0
0
1
1
640  (10) 
 
Thus unknown displacements are 
 
1
1
3
2
147.14 47.14 0 1
1
(150.82 )
47.14 147.14 0 1 10
u
u
-
- ?????? ??
=-
?? ? ? ? ?
??
-
???? ?? ??
    (11) 
 
4
1
4
2
7.763 10
7.763 10
um
um
-
-
=×
=×
 
 
Now reactions are calculated as 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
0
0
1
1
0
0
640
0
0
0
0
0
0
0 0 0 0 0 0
0 100 0 0 0 0
0 0 14 . 47 14 . 47 0 0
0 0 14 . 47 14 . 47 0 0
0 0 0 0 100 0
0 0 0 0 0 0
0 0
0 100
14 . 47 14 . 47
14 . 47 14 . 47
100 0
0 0
10
2
1 3
8
7
6
5
4
3
u
u
p
p
p
p
p
p
 
 
3
4
5
6
7
8
0
77.63
77.63
77.63
77.63
0
p
p
p
p
p
p
??
??
??
??
-
??
??
??
??
?? ? ?
=
?? ? ?
?? ? ?
?? ? ?
-
?? ? ?
??
????
??
kN      (12) 
 
                                                         
 
 
The support reactions are shown in Fig.26.2c.The member forces can be easily 
calculated from reactions. The member end forces can also be calculated by 
using equation (26.10a) and (26.10b). For example, for member (1), 
o
0 = ? 
100 10
3 '
2
× = p [] 0 1 0 1 - 4
4
0
0
7.763 10
7.763 10
-
-
? ?
? ?
? ?
? ?
×
? ?
? ?
×
??
    (13) 
      = 77.763 kN. Thus the member (1) is in tension. 
 
Member (2) 
o
45 = ? 
281 . 94 10
3 '
2
× = p [-0.707 -0.707 0.707 0.707]
?
?
?
?
?
?
?
?
?
?
?
?
?
?
×
×
-
-
3
3
10 2942 . 3
10 2942 . 3
0
0
 
kN. 78 . 109
2
- = ' p 
 
Thus member (2) is in compression 
 
 
 
Page 4


                                                         
411
3
33
0000
01 0 1
15 10 2 10
0000 3 x 10 10
010 1
k
-
? ?
? ?
-
×××
? ?
?? =
??
? ? ×
? ?
-
? ?
    (7)  
 
The global stiffness matrix is of the order 8 8 × ,assembling the three member 
stiffness matrices, one gets 
 
[]
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
=
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
10
3
k  (8) 
 
Writing the load displacement equation for the truss 
 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
p
p
p
p
p
p
p
p
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
10
3
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
u
u
u
u
u
u
u
u
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
0
0
1
1
0
0
1
1
640           
(9) 
 
In the present case, the displacements 
1
u and 
2
u are not known. All other 
displacements are zero. Also 0
2 1
= = p p (as no joint loads are applied).Thus, 
 
                                                         
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
p
p
p
p
p
p
p
p
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
=
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
u
u
u
u
u
u
u
u
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
0
0
1
1
0
0
1
1
640  (10) 
 
Thus unknown displacements are 
 
1
1
3
2
147.14 47.14 0 1
1
(150.82 )
47.14 147.14 0 1 10
u
u
-
- ?????? ??
=-
?? ? ? ? ?
??
-
???? ?? ??
    (11) 
 
4
1
4
2
7.763 10
7.763 10
um
um
-
-
=×
=×
 
 
Now reactions are calculated as 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
0
0
1
1
0
0
640
0
0
0
0
0
0
0 0 0 0 0 0
0 100 0 0 0 0
0 0 14 . 47 14 . 47 0 0
0 0 14 . 47 14 . 47 0 0
0 0 0 0 100 0
0 0 0 0 0 0
0 0
0 100
14 . 47 14 . 47
14 . 47 14 . 47
100 0
0 0
10
2
1 3
8
7
6
5
4
3
u
u
p
p
p
p
p
p
 
 
3
4
5
6
7
8
0
77.63
77.63
77.63
77.63
0
p
p
p
p
p
p
??
??
??
??
-
??
??
??
??
?? ? ?
=
?? ? ?
?? ? ?
?? ? ?
-
?? ? ?
??
????
??
kN      (12) 
 
                                                         
 
 
The support reactions are shown in Fig.26.2c.The member forces can be easily 
calculated from reactions. The member end forces can also be calculated by 
using equation (26.10a) and (26.10b). For example, for member (1), 
o
0 = ? 
100 10
3 '
2
× = p [] 0 1 0 1 - 4
4
0
0
7.763 10
7.763 10
-
-
? ?
? ?
? ?
? ?
×
? ?
? ?
×
??
    (13) 
      = 77.763 kN. Thus the member (1) is in tension. 
 
Member (2) 
o
45 = ? 
281 . 94 10
3 '
2
× = p [-0.707 -0.707 0.707 0.707]
?
?
?
?
?
?
?
?
?
?
?
?
?
?
×
×
-
-
3
3
10 2942 . 3
10 2942 . 3
0
0
 
kN. 78 . 109
2
- = ' p 
 
Thus member (2) is in compression 
 
 
 
                                                         
Example  26.2  
Analyze the truss shown in Fig.26.3a, if the member BC is made 0.01m too short 
before placing it in the truss. Assume AE=300 kN for all members. 
 
 
Page 5


                                                         
411
3
33
0000
01 0 1
15 10 2 10
0000 3 x 10 10
010 1
k
-
? ?
? ?
-
×××
? ?
?? =
??
? ? ×
? ?
-
? ?
    (7)  
 
The global stiffness matrix is of the order 8 8 × ,assembling the three member 
stiffness matrices, one gets 
 
[]
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
=
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
10
3
k  (8) 
 
Writing the load displacement equation for the truss 
 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
p
p
p
p
p
p
p
p
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
10
3
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
u
u
u
u
u
u
u
u
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
0
0
1
1
0
0
1
1
640           
(9) 
 
In the present case, the displacements 
1
u and 
2
u are not known. All other 
displacements are zero. Also 0
2 1
= = p p (as no joint loads are applied).Thus, 
 
                                                         
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
p
p
p
p
p
p
p
p
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
- - -
- - -
=
0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 100
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 14 . 47 14 . 47 0 0 14 . 47 14 . 47
0 0 0 0 100 0 100 0
0 0 0 0 0 0 0 0
0 0 14 . 47 14 . 47 100 0 14 . 147 14 . 47
0 100 14 . 47 14 . 47 0 0 14 . 47 14 . 147
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
8
7
6
5
4
3
2
1
u
u
u
u
u
u
u
u
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
0
0
1
1
0
0
1
1
640  (10) 
 
Thus unknown displacements are 
 
1
1
3
2
147.14 47.14 0 1
1
(150.82 )
47.14 147.14 0 1 10
u
u
-
- ?????? ??
=-
?? ? ? ? ?
??
-
???? ?? ??
    (11) 
 
4
1
4
2
7.763 10
7.763 10
um
um
-
-
=×
=×
 
 
Now reactions are calculated as 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
- -
-
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
0
0
1
1
0
0
640
0
0
0
0
0
0
0 0 0 0 0 0
0 100 0 0 0 0
0 0 14 . 47 14 . 47 0 0
0 0 14 . 47 14 . 47 0 0
0 0 0 0 100 0
0 0 0 0 0 0
0 0
0 100
14 . 47 14 . 47
14 . 47 14 . 47
100 0
0 0
10
2
1 3
8
7
6
5
4
3
u
u
p
p
p
p
p
p
 
 
3
4
5
6
7
8
0
77.63
77.63
77.63
77.63
0
p
p
p
p
p
p
??
??
??
??
-
??
??
??
??
?? ? ?
=
?? ? ?
?? ? ?
?? ? ?
-
?? ? ?
??
????
??
kN      (12) 
 
                                                         
 
 
The support reactions are shown in Fig.26.2c.The member forces can be easily 
calculated from reactions. The member end forces can also be calculated by 
using equation (26.10a) and (26.10b). For example, for member (1), 
o
0 = ? 
100 10
3 '
2
× = p [] 0 1 0 1 - 4
4
0
0
7.763 10
7.763 10
-
-
? ?
? ?
? ?
? ?
×
? ?
? ?
×
??
    (13) 
      = 77.763 kN. Thus the member (1) is in tension. 
 
Member (2) 
o
45 = ? 
281 . 94 10
3 '
2
× = p [-0.707 -0.707 0.707 0.707]
?
?
?
?
?
?
?
?
?
?
?
?
?
?
×
×
-
-
3
3
10 2942 . 3
10 2942 . 3
0
0
 
kN. 78 . 109
2
- = ' p 
 
Thus member (2) is in compression 
 
 
 
                                                         
Example  26.2  
Analyze the truss shown in Fig.26.3a, if the member BC is made 0.01m too short 
before placing it in the truss. Assume AE=300 kN for all members. 
 
 
                                                         
 
 
Solution 
A similar truss with different boundary conditions has already been solved in 
example 25.1. For the sake of completeness the member of nodes and members 
are shown in Fig.26.3b.The displacements 
6 5 4 3
, , , u u u u ,
7
u and 
8
u are zero due to 
boundary conditions. For the present problem the unconstrained degrees of 
freedom are 
1
u and 
2
u .The assembled stiffness matrix is of the order 8 8 × and is 
available in example 25.1. 
In the given problem the member (2) is short by 0.01m.The forces developed in 
member (2) in the global coordinate system due to fabrication error is 
 
()
()
()
()
()
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
-
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
sin
cos
sin
cos
4
01 . 0
0 2
0 1
0 4
0 3
AE
p
p
p
p
 
            =
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
75 . 0
0
75 . 0
0
kN        (1) 
Now force-displacement relations for the truss are  
 
Read More
34 videos|140 docs|31 tests

Top Courses for Civil Engineering (CE)

FAQs on The Direct Stiffness Method: Temperature Changes & Fabrication Errors in Truss Analysis - 2 - Structural Analysis - Civil Engineering (CE)

1. How does temperature changes affect truss analysis using the Direct Stiffness Method?
Ans. Temperature changes can cause thermal expansion or contraction of the truss elements, leading to changes in their lengths. This can result in changes in the internal forces and displacements of the truss members, which need to be considered in the analysis using the Direct Stiffness Method. The temperature effects can be incorporated by modifying the stiffness matrix of the truss elements based on the coefficient of thermal expansion and the temperature change.
2. What are fabrication errors and how do they impact truss analysis using the Direct Stiffness Method?
Ans. Fabrication errors refer to the deviations or inaccuracies in the physical construction of the truss members compared to their ideal design. These errors can occur due to manufacturing tolerances, welding or assembly imperfections, or any other factors that affect the actual dimensions and alignment of the truss elements. Fabrication errors can lead to variations in the stiffness and geometry of the truss, which can affect the calculated internal forces and displacements using the Direct Stiffness Method.
3. How can temperature changes be accounted for in the Direct Stiffness Method analysis of trusses?
Ans. Temperature changes can be accounted for in the Direct Stiffness Method analysis of trusses by introducing additional terms in the stiffness matrix of the truss elements. These additional terms represent the thermal expansion or contraction effects and are determined based on the coefficient of thermal expansion and the temperature change. By including these temperature-related terms in the stiffness matrix, the analysis can accurately capture the changes in the truss behavior due to temperature variations.
4. What are the potential challenges in incorporating temperature changes and fabrication errors in truss analysis using the Direct Stiffness Method?
Ans. Incorporating temperature changes and fabrication errors in truss analysis using the Direct Stiffness Method can pose several challenges. Firstly, accurately determining the coefficient of thermal expansion and the temperature change can be difficult, especially in real-world scenarios. Secondly, quantifying the extent and nature of fabrication errors can be challenging, as they can vary for different truss members. Additionally, modifying the stiffness matrix to account for temperature and fabrication effects can increase the complexity of the analysis, requiring additional computational efforts.
5. How can the Direct Stiffness Method be used to analyze trusses with temperature changes and fabrication errors?
Ans. The Direct Stiffness Method can be used to analyze trusses with temperature changes and fabrication errors by considering the effects of these factors in the stiffness matrix of the truss elements. By accurately incorporating the thermal expansion or contraction effects and accounting for fabrication errors, the modified stiffness matrix can provide more realistic results for the internal forces and displacements of the truss members. This allows engineers to assess the structural behavior of trusses under various temperature conditions and fabrication tolerances, aiding in the design and evaluation process.
34 videos|140 docs|31 tests
Download as PDF
Explore Courses for Civil Engineering (CE) exam

Top Courses for Civil Engineering (CE)

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Semester Notes

,

pdf

,

The Direct Stiffness Method: Temperature Changes & Fabrication Errors in Truss Analysis - 2 | Structural Analysis - Civil Engineering (CE)

,

Exam

,

practice quizzes

,

Viva Questions

,

ppt

,

Summary

,

mock tests for examination

,

video lectures

,

The Direct Stiffness Method: Temperature Changes & Fabrication Errors in Truss Analysis - 2 | Structural Analysis - Civil Engineering (CE)

,

shortcuts and tricks

,

Extra Questions

,

Previous Year Questions with Solutions

,

Free

,

Sample Paper

,

The Direct Stiffness Method: Temperature Changes & Fabrication Errors in Truss Analysis - 2 | Structural Analysis - Civil Engineering (CE)

,

past year papers

,

Objective type Questions

,

MCQs

,

study material

,

Important questions

;