NEET Exam  >  NEET Notes  >  DC Pandey Solutions for NEET Physics  >  DC Pandey Solutions: Centre of Mass, Conservation of Linear Momentum- 2

DC Pandey Solutions: Centre of Mass, Conservation of Linear Momentum- 2 | DC Pandey Solutions for NEET Physics PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Introductory Exercise 8.8
1. v v
0
sin cos ( ) a a b = +
v
0
cos sin ( ) a a b = + (Impact being elastic)
\ tan cot( ) a a b = +
or cot cot( )
p
a a b
2
- = +   
or          
p
a a b
2
- = +
or b
p
a = -
2
2
2. Speed after n impacts
Speed before first impact = = u gh ( ) 2
Speed before one impact = eu
Speed after 2 impacts = = e eu e u ( )
2
 
........ ......... ........ ........ ........ ......... 
Speed after n impacts = e u
n
Height ( ) H upto which the ball rebounds
after nth rebound
            H
e u
g
n
=
( )
2
2
              =
e u
g
n 2 2
2
              = × e h
n 2
3. mv MV + = + 0 0
Þ      V
m
M
v =
e=
Velocityof separation
Velocityofapproach
          =
-
-
V
v
0
0
          =
V
v
          =
m
M
4.
As the balls are of same size, the centres
of the balls P Q , and R will be at vertices
of an equilateral triangle when ball C just
strikes balls A and B symmetrically and
as such the balls A and B will follow the
path as shown below
Applying law of conservation of
momentum
mu= Resultant momentum of A and B
balls along the axis of X.
or mu mv = ° 2 30 cos
or u v = 2
3
2
   
or u v = 3
As the ball C will strike ball A (and as well 
as ball B) with velocity ucos 30°
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 169
a
v cos (a + b) a
v cos a
0
v
0
a
v sin a
0
v sin (a + b)
0
b
v
m M m
V
M
Before collision After collision
A B B A
Rest Rest
X
C
R
P
Q
B
A
u
Rest
Rest
ÐPRX = 30°
ÐQRX = 30°
v
30°
30°
C
A
v
B
X Angle O
A
Rest
Page 2


Introductory Exercise 8.8
1. v v
0
sin cos ( ) a a b = +
v
0
cos sin ( ) a a b = + (Impact being elastic)
\ tan cot( ) a a b = +
or cot cot( )
p
a a b
2
- = +   
or          
p
a a b
2
- = +
or b
p
a = -
2
2
2. Speed after n impacts
Speed before first impact = = u gh ( ) 2
Speed before one impact = eu
Speed after 2 impacts = = e eu e u ( )
2
 
........ ......... ........ ........ ........ ......... 
Speed after n impacts = e u
n
Height ( ) H upto which the ball rebounds
after nth rebound
            H
e u
g
n
=
( )
2
2
              =
e u
g
n 2 2
2
              = × e h
n 2
3. mv MV + = + 0 0
Þ      V
m
M
v =
e=
Velocityof separation
Velocityofapproach
          =
-
-
V
v
0
0
          =
V
v
          =
m
M
4.
As the balls are of same size, the centres
of the balls P Q , and R will be at vertices
of an equilateral triangle when ball C just
strikes balls A and B symmetrically and
as such the balls A and B will follow the
path as shown below
Applying law of conservation of
momentum
mu= Resultant momentum of A and B
balls along the axis of X.
or mu mv = ° 2 30 cos
or u v = 2
3
2
   
or u v = 3
As the ball C will strike ball A (and as well 
as ball B) with velocity ucos 30°
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 169
a
v cos (a + b) a
v cos a
0
v
0
a
v sin a
0
v sin (a + b)
0
b
v
m M m
V
M
Before collision After collision
A B B A
Rest Rest
X
C
R
P
Q
B
A
u
Rest
Rest
ÐPRX = 30°
ÐQRX = 30°
v
30°
30°
C
A
v
B
X Angle O
A
Rest
Velocity of approach of ball C towards ball A
            = ° - ucos30 0
            = ° ucos30
            =u 3
Velocity of separation of ball A away from
ball C = v
\            e
v
u
=
3
2
  =
v
v ( ) 3
3
2
               =
2
3
5. x-component of velocity
before impact = 2 i
^
\ after impact = - e2 i
^
            = - ´
1
2
2i
^
            = - i
^
y-component of velocity
before impact = 2 j
^
\ after impact = 2 j
^
\ Velocity after impact = - + i j
^ ^
2
6. At A, u u
| |
cos = q
    u u
^
= sinq
\ At B
u u
| |
cos = q      
u eu
^
= sinq     
\    
T
T
u
g
eu
g
e
1
2
2
2
1
= =
sin
sin
q
q
UsingT
u
g
=
é
ë
ê
ù
û
ú
^
2
R
R
u u
eu u
g
1
2
2
2
2
=
( sin )( cos )
( sin ) cos
q q
q q
   Using R
u u
g
=
é
ë
ê
ù
û
ú
^
2
| |
      =
1
e
H
H
u
g
eu
g
1
2
2
2
2
2
=
( sin )
( sin )
q
q
                    Using H
u
g
=
é
ë
ê
ù
û
ú
^
2
2
   =
1
2
e
AIEEE Corner
Subjective Questions (Level 1)
1.
  x
CM
=
× + × + × + ×
+ + +
1 0 2 1 3 1 4 0
1 2 3 4
      =
5
10
 m
    y
CM
=
× + × + × + ×
+ + +
1 0 2 0 3 1 4 1
1 2 3 4
      =
7
10
 m
170 | Mechanics-1
45°
2 j
2 i
45°
45°
X
v = 2i + 2j
^
^ ^
^
q
A
u sin q
H
1
e u sin q
B
T
1
T
2
H
2
R
2
R
1
u cos q
v
u sin q
B 2kg
C
3kg
D 4kg
A 1kg
P
(CM)
1 m
1 m 1 m
1 m
x
y
Page 3


Introductory Exercise 8.8
1. v v
0
sin cos ( ) a a b = +
v
0
cos sin ( ) a a b = + (Impact being elastic)
\ tan cot( ) a a b = +
or cot cot( )
p
a a b
2
- = +   
or          
p
a a b
2
- = +
or b
p
a = -
2
2
2. Speed after n impacts
Speed before first impact = = u gh ( ) 2
Speed before one impact = eu
Speed after 2 impacts = = e eu e u ( )
2
 
........ ......... ........ ........ ........ ......... 
Speed after n impacts = e u
n
Height ( ) H upto which the ball rebounds
after nth rebound
            H
e u
g
n
=
( )
2
2
              =
e u
g
n 2 2
2
              = × e h
n 2
3. mv MV + = + 0 0
Þ      V
m
M
v =
e=
Velocityof separation
Velocityofapproach
          =
-
-
V
v
0
0
          =
V
v
          =
m
M
4.
As the balls are of same size, the centres
of the balls P Q , and R will be at vertices
of an equilateral triangle when ball C just
strikes balls A and B symmetrically and
as such the balls A and B will follow the
path as shown below
Applying law of conservation of
momentum
mu= Resultant momentum of A and B
balls along the axis of X.
or mu mv = ° 2 30 cos
or u v = 2
3
2
   
or u v = 3
As the ball C will strike ball A (and as well 
as ball B) with velocity ucos 30°
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 169
a
v cos (a + b) a
v cos a
0
v
0
a
v sin a
0
v sin (a + b)
0
b
v
m M m
V
M
Before collision After collision
A B B A
Rest Rest
X
C
R
P
Q
B
A
u
Rest
Rest
ÐPRX = 30°
ÐQRX = 30°
v
30°
30°
C
A
v
B
X Angle O
A
Rest
Velocity of approach of ball C towards ball A
            = ° - ucos30 0
            = ° ucos30
            =u 3
Velocity of separation of ball A away from
ball C = v
\            e
v
u
=
3
2
  =
v
v ( ) 3
3
2
               =
2
3
5. x-component of velocity
before impact = 2 i
^
\ after impact = - e2 i
^
            = - ´
1
2
2i
^
            = - i
^
y-component of velocity
before impact = 2 j
^
\ after impact = 2 j
^
\ Velocity after impact = - + i j
^ ^
2
6. At A, u u
| |
cos = q
    u u
^
= sinq
\ At B
u u
| |
cos = q      
u eu
^
= sinq     
\    
T
T
u
g
eu
g
e
1
2
2
2
1
= =
sin
sin
q
q
UsingT
u
g
=
é
ë
ê
ù
û
ú
^
2
R
R
u u
eu u
g
1
2
2
2
2
=
( sin )( cos )
( sin ) cos
q q
q q
   Using R
u u
g
=
é
ë
ê
ù
û
ú
^
2
| |
      =
1
e
H
H
u
g
eu
g
1
2
2
2
2
2
=
( sin )
( sin )
q
q
                    Using H
u
g
=
é
ë
ê
ù
û
ú
^
2
2
   =
1
2
e
AIEEE Corner
Subjective Questions (Level 1)
1.
  x
CM
=
× + × + × + ×
+ + +
1 0 2 1 3 1 4 0
1 2 3 4
      =
5
10
 m
    y
CM
=
× + × + × + ×
+ + +
1 0 2 0 3 1 4 1
1 2 3 4
      =
7
10
 m
170 | Mechanics-1
45°
2 j
2 i
45°
45°
X
v = 2i + 2j
^
^ ^
^
q
A
u sin q
H
1
e u sin q
B
T
1
T
2
H
2
R
2
R
1
u cos q
v
u sin q
B 2kg
C
3kg
D 4kg
A 1kg
P
(CM)
1 m
1 m 1 m
1 m
x
y
   AP x y
2 2 2
= +
CM CM
 =
æ
è
ç
ö
ø
÷ +
æ
è
ç
ö
ø
÷
5
10
7
10
2 2
      =0.74m
2
2. x
A x A x
A A
CM
=
+
+
1 1 2 2
1 2
=
× + ×
+
a
a
a
a
a
2
2
2
2
0
4
4
p
p
( )
            =
+
p
p 4
a
3. Let A = area of rectangle
  x
A
A a
A
A
CM
=
× + -
æ
è
ç
ö
ø
÷
+ -
æ
è
ç
ö
ø
÷
0
4 4
4
      = - × ×
A
A
a
4
4
3 4
      = -
a
12
  y
A
A b
A
A
CM
=
× + -
æ
è
ç
ö
ø
÷
+ -
æ
è
ç
ö
ø
÷
0
4 4
4
     = -
b
12
Centre of mass - -
æ
è
ç
ö
ø
÷
a b
12 12
,
4.   x
V a b
V a
CM
=
× + -
æ
è
ç
ö
ø
÷
-
0
4
3
4
3
3
3
p
p
       =
-
-
4
3
4
3
4
3
3
3 3
p
p p
a b
R a
       = -
-
æ
è
ç
ö
ø
÷
a
R a
b
3
3 3
By symmetry y
CM
= 0
5. In Fig. 1,  C is CM.
\ m a m l a
1 2
= - ( ) …(i)
In Fig. 2, C¢ is CM.
m a b l m l a l b
1 1 2 2
( ) ( ) + - = - + - …(ii)
Substituting Eq. (i) in Eq. (ii),
m b l m l b
1 1 2 2
( ) ( ) - = -
or m b m l m l m b
1 1 1 2 2 2
- = -
or ( ) m m b m l m l
1 2 1 1 2 2
+ = +
 
or         b
m l m l
m m
=
+
+
1 1 2 2
1 2
6. x
x dm
dm
CM
=
ò
ò
 
where, dm = mass of element of length dx.
          =
ò
ò
x dx A
dx A
r
r
          =
æ
è
ç
ö
ø
÷
æ
è
ç
ö
ø
÷
ò
ò
x
x
l
dx
x
l
a
l
x
l
0
0
2
2
0
2
2
0
r
r
(Q r r =
0
2
2
x
l
)
          =
ò
ò
x dx
x dx
l
l
3
0
2
0
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 171
A =
2
p
a
4
2
2
A = a
1
a
2
a a
a
O
b
a
O
X
Y
(       )
a
4
,
b
4
l
a
C m
1
m
2
l
2
b
l
1
m
1
m
2
C'
Fig. 1
Fig. 2
dx
x O
Page 4


Introductory Exercise 8.8
1. v v
0
sin cos ( ) a a b = +
v
0
cos sin ( ) a a b = + (Impact being elastic)
\ tan cot( ) a a b = +
or cot cot( )
p
a a b
2
- = +   
or          
p
a a b
2
- = +
or b
p
a = -
2
2
2. Speed after n impacts
Speed before first impact = = u gh ( ) 2
Speed before one impact = eu
Speed after 2 impacts = = e eu e u ( )
2
 
........ ......... ........ ........ ........ ......... 
Speed after n impacts = e u
n
Height ( ) H upto which the ball rebounds
after nth rebound
            H
e u
g
n
=
( )
2
2
              =
e u
g
n 2 2
2
              = × e h
n 2
3. mv MV + = + 0 0
Þ      V
m
M
v =
e=
Velocityof separation
Velocityofapproach
          =
-
-
V
v
0
0
          =
V
v
          =
m
M
4.
As the balls are of same size, the centres
of the balls P Q , and R will be at vertices
of an equilateral triangle when ball C just
strikes balls A and B symmetrically and
as such the balls A and B will follow the
path as shown below
Applying law of conservation of
momentum
mu= Resultant momentum of A and B
balls along the axis of X.
or mu mv = ° 2 30 cos
or u v = 2
3
2
   
or u v = 3
As the ball C will strike ball A (and as well 
as ball B) with velocity ucos 30°
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 169
a
v cos (a + b) a
v cos a
0
v
0
a
v sin a
0
v sin (a + b)
0
b
v
m M m
V
M
Before collision After collision
A B B A
Rest Rest
X
C
R
P
Q
B
A
u
Rest
Rest
ÐPRX = 30°
ÐQRX = 30°
v
30°
30°
C
A
v
B
X Angle O
A
Rest
Velocity of approach of ball C towards ball A
            = ° - ucos30 0
            = ° ucos30
            =u 3
Velocity of separation of ball A away from
ball C = v
\            e
v
u
=
3
2
  =
v
v ( ) 3
3
2
               =
2
3
5. x-component of velocity
before impact = 2 i
^
\ after impact = - e2 i
^
            = - ´
1
2
2i
^
            = - i
^
y-component of velocity
before impact = 2 j
^
\ after impact = 2 j
^
\ Velocity after impact = - + i j
^ ^
2
6. At A, u u
| |
cos = q
    u u
^
= sinq
\ At B
u u
| |
cos = q      
u eu
^
= sinq     
\    
T
T
u
g
eu
g
e
1
2
2
2
1
= =
sin
sin
q
q
UsingT
u
g
=
é
ë
ê
ù
û
ú
^
2
R
R
u u
eu u
g
1
2
2
2
2
=
( sin )( cos )
( sin ) cos
q q
q q
   Using R
u u
g
=
é
ë
ê
ù
û
ú
^
2
| |
      =
1
e
H
H
u
g
eu
g
1
2
2
2
2
2
=
( sin )
( sin )
q
q
                    Using H
u
g
=
é
ë
ê
ù
û
ú
^
2
2
   =
1
2
e
AIEEE Corner
Subjective Questions (Level 1)
1.
  x
CM
=
× + × + × + ×
+ + +
1 0 2 1 3 1 4 0
1 2 3 4
      =
5
10
 m
    y
CM
=
× + × + × + ×
+ + +
1 0 2 0 3 1 4 1
1 2 3 4
      =
7
10
 m
170 | Mechanics-1
45°
2 j
2 i
45°
45°
X
v = 2i + 2j
^
^ ^
^
q
A
u sin q
H
1
e u sin q
B
T
1
T
2
H
2
R
2
R
1
u cos q
v
u sin q
B 2kg
C
3kg
D 4kg
A 1kg
P
(CM)
1 m
1 m 1 m
1 m
x
y
   AP x y
2 2 2
= +
CM CM
 =
æ
è
ç
ö
ø
÷ +
æ
è
ç
ö
ø
÷
5
10
7
10
2 2
      =0.74m
2
2. x
A x A x
A A
CM
=
+
+
1 1 2 2
1 2
=
× + ×
+
a
a
a
a
a
2
2
2
2
0
4
4
p
p
( )
            =
+
p
p 4
a
3. Let A = area of rectangle
  x
A
A a
A
A
CM
=
× + -
æ
è
ç
ö
ø
÷
+ -
æ
è
ç
ö
ø
÷
0
4 4
4
      = - × ×
A
A
a
4
4
3 4
      = -
a
12
  y
A
A b
A
A
CM
=
× + -
æ
è
ç
ö
ø
÷
+ -
æ
è
ç
ö
ø
÷
0
4 4
4
     = -
b
12
Centre of mass - -
æ
è
ç
ö
ø
÷
a b
12 12
,
4.   x
V a b
V a
CM
=
× + -
æ
è
ç
ö
ø
÷
-
0
4
3
4
3
3
3
p
p
       =
-
-
4
3
4
3
4
3
3
3 3
p
p p
a b
R a
       = -
-
æ
è
ç
ö
ø
÷
a
R a
b
3
3 3
By symmetry y
CM
= 0
5. In Fig. 1,  C is CM.
\ m a m l a
1 2
= - ( ) …(i)
In Fig. 2, C¢ is CM.
m a b l m l a l b
1 1 2 2
( ) ( ) + - = - + - …(ii)
Substituting Eq. (i) in Eq. (ii),
m b l m l b
1 1 2 2
( ) ( ) - = -
or m b m l m l m b
1 1 1 2 2 2
- = -
or ( ) m m b m l m l
1 2 1 1 2 2
+ = +
 
or         b
m l m l
m m
=
+
+
1 1 2 2
1 2
6. x
x dm
dm
CM
=
ò
ò
 
where, dm = mass of element of length dx.
          =
ò
ò
x dx A
dx A
r
r
          =
æ
è
ç
ö
ø
÷
æ
è
ç
ö
ø
÷
ò
ò
x
x
l
dx
x
l
a
l
x
l
0
0
2
2
0
2
2
0
r
r
(Q r r =
0
2
2
x
l
)
          =
ò
ò
x dx
x dx
l
l
3
0
2
0
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 171
A =
2
p
a
4
2
2
A = a
1
a
2
a a
a
O
b
a
O
X
Y
(       )
a
4
,
b
4
l
a
C m
1
m
2
l
2
b
l
1
m
1
m
2
C'
Fig. 1
Fig. 2
dx
x O
          = ×
é
ë
ê
ù
û
ú
3
4
3
4
0
x
x
l
          =
3
4
l
7. x
CM
=
´ + ´
+
1 10 2 12
1 2
        =
34
3
 m
     v
CM
=
´ - + ´ +
+
1 6 2 4
1 2
( ) ( )
  = +
-
2
3
1
ms
x¢
CM
 (new position of CM) 
        = +
æ
è
ç
ö
ø
÷
-
34
3
2
2
3
1
m s ms
        =
38
3
 m = 12.67 m
8. v
CM
=
´ + + ´ -
+
1 2 2 2 1
1 2
( ) ( )
= 0 ms
-2
\ Displacement of CM in 1 s = 0 m.
9. Acceleration ( ) a
®
 = -
-
10
2
j
^
ms
       v u a
® ® ®
= + t
         =
+ +
-
( )( ) ( )(
$ $
)
$
1 0 2 10 10
3
10
i j
j
                 = -
æ
è
ç
ö
ø
÷
20
3
10
3
$ $
i j m/s
New position vector ( ) r
1
®
 of particle A
   ( ) r s u a
1 0
2
1
2
® ® ® ®
= + + t t
    = + + + - ×
®
( ) ( )
^ ^ ^
10 20 0
1
2
10 1
2
i j j
      = + 10 15 i j
^ ^
m
New position vector ( ) r
2
®
 of particle B
r i j i j j
2
2
20 40 10 10 1
1
2
10 1
®
= + + + × + - × ( ) ( ) ( )
^ ^ ^ ^ ^
  = + 30 45 i j
^ ^
New position of CM
     R
r r ®
® ®
=
+
+
1 2
1 2
1 2
( ) ( )
       =
+ + + 10 15 60 90
3
i j i j
^ ^ ^ ^
       =
+ 70 105
3
i j
^ ^
 m
10.
(a)  3
0 0 1 12
0 1
=
× + × ´
+
m
m .
Þ m = 0.3 kg
(b) Momentum of system = Momentum of CM
           = + ´
-
( . )
^
m 01 6
1
kg ms j
           =
-
2.4 kgms j
^ 1
(c) v
v ®
® ®
=
+
+
CM
.3) 0.10)
0.3 .1
m
( ( 0 0
0
   v v
m
® ®
=
4
4
CM
       = ´
-
4
3
6
1
j
^
ms
       =
-
8
1
j
^
m s
11.   A t
m
· =0s
  B t
m
· =
2
100 ( ) ms
Position of 1st particle ( ) A at t = 300 ms
s
1
3 2
1
2
10 300 10 = ´ ´ ´
-
( )
     =0.45 m
Position of 2nd particle ( ) B at t = 300 ms
   (B is at the position of A at t = 100 ms)
    s
2
3 2
1
2
100 200 10 = ´ ´ ´
-
( )
      =0.20 m 
\ Position of CM =
´ + ´
+
2 0.2 0.45
2
m m
m m
= 28.3 cm
172 | Mechanics-1
1 kg
–1
6ms
+ ive
2 kg
10 m 10 m
–1
4ms
m
2 kg 1 kg
–1
2 ms
–1
1 ms
+ ive
12 m
O
CM
–1
6 j ms
 
m kg
3 m
0.10 kg
^
Page 5


Introductory Exercise 8.8
1. v v
0
sin cos ( ) a a b = +
v
0
cos sin ( ) a a b = + (Impact being elastic)
\ tan cot( ) a a b = +
or cot cot( )
p
a a b
2
- = +   
or          
p
a a b
2
- = +
or b
p
a = -
2
2
2. Speed after n impacts
Speed before first impact = = u gh ( ) 2
Speed before one impact = eu
Speed after 2 impacts = = e eu e u ( )
2
 
........ ......... ........ ........ ........ ......... 
Speed after n impacts = e u
n
Height ( ) H upto which the ball rebounds
after nth rebound
            H
e u
g
n
=
( )
2
2
              =
e u
g
n 2 2
2
              = × e h
n 2
3. mv MV + = + 0 0
Þ      V
m
M
v =
e=
Velocityof separation
Velocityofapproach
          =
-
-
V
v
0
0
          =
V
v
          =
m
M
4.
As the balls are of same size, the centres
of the balls P Q , and R will be at vertices
of an equilateral triangle when ball C just
strikes balls A and B symmetrically and
as such the balls A and B will follow the
path as shown below
Applying law of conservation of
momentum
mu= Resultant momentum of A and B
balls along the axis of X.
or mu mv = ° 2 30 cos
or u v = 2
3
2
   
or u v = 3
As the ball C will strike ball A (and as well 
as ball B) with velocity ucos 30°
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 169
a
v cos (a + b) a
v cos a
0
v
0
a
v sin a
0
v sin (a + b)
0
b
v
m M m
V
M
Before collision After collision
A B B A
Rest Rest
X
C
R
P
Q
B
A
u
Rest
Rest
ÐPRX = 30°
ÐQRX = 30°
v
30°
30°
C
A
v
B
X Angle O
A
Rest
Velocity of approach of ball C towards ball A
            = ° - ucos30 0
            = ° ucos30
            =u 3
Velocity of separation of ball A away from
ball C = v
\            e
v
u
=
3
2
  =
v
v ( ) 3
3
2
               =
2
3
5. x-component of velocity
before impact = 2 i
^
\ after impact = - e2 i
^
            = - ´
1
2
2i
^
            = - i
^
y-component of velocity
before impact = 2 j
^
\ after impact = 2 j
^
\ Velocity after impact = - + i j
^ ^
2
6. At A, u u
| |
cos = q
    u u
^
= sinq
\ At B
u u
| |
cos = q      
u eu
^
= sinq     
\    
T
T
u
g
eu
g
e
1
2
2
2
1
= =
sin
sin
q
q
UsingT
u
g
=
é
ë
ê
ù
û
ú
^
2
R
R
u u
eu u
g
1
2
2
2
2
=
( sin )( cos )
( sin ) cos
q q
q q
   Using R
u u
g
=
é
ë
ê
ù
û
ú
^
2
| |
      =
1
e
H
H
u
g
eu
g
1
2
2
2
2
2
=
( sin )
( sin )
q
q
                    Using H
u
g
=
é
ë
ê
ù
û
ú
^
2
2
   =
1
2
e
AIEEE Corner
Subjective Questions (Level 1)
1.
  x
CM
=
× + × + × + ×
+ + +
1 0 2 1 3 1 4 0
1 2 3 4
      =
5
10
 m
    y
CM
=
× + × + × + ×
+ + +
1 0 2 0 3 1 4 1
1 2 3 4
      =
7
10
 m
170 | Mechanics-1
45°
2 j
2 i
45°
45°
X
v = 2i + 2j
^
^ ^
^
q
A
u sin q
H
1
e u sin q
B
T
1
T
2
H
2
R
2
R
1
u cos q
v
u sin q
B 2kg
C
3kg
D 4kg
A 1kg
P
(CM)
1 m
1 m 1 m
1 m
x
y
   AP x y
2 2 2
= +
CM CM
 =
æ
è
ç
ö
ø
÷ +
æ
è
ç
ö
ø
÷
5
10
7
10
2 2
      =0.74m
2
2. x
A x A x
A A
CM
=
+
+
1 1 2 2
1 2
=
× + ×
+
a
a
a
a
a
2
2
2
2
0
4
4
p
p
( )
            =
+
p
p 4
a
3. Let A = area of rectangle
  x
A
A a
A
A
CM
=
× + -
æ
è
ç
ö
ø
÷
+ -
æ
è
ç
ö
ø
÷
0
4 4
4
      = - × ×
A
A
a
4
4
3 4
      = -
a
12
  y
A
A b
A
A
CM
=
× + -
æ
è
ç
ö
ø
÷
+ -
æ
è
ç
ö
ø
÷
0
4 4
4
     = -
b
12
Centre of mass - -
æ
è
ç
ö
ø
÷
a b
12 12
,
4.   x
V a b
V a
CM
=
× + -
æ
è
ç
ö
ø
÷
-
0
4
3
4
3
3
3
p
p
       =
-
-
4
3
4
3
4
3
3
3 3
p
p p
a b
R a
       = -
-
æ
è
ç
ö
ø
÷
a
R a
b
3
3 3
By symmetry y
CM
= 0
5. In Fig. 1,  C is CM.
\ m a m l a
1 2
= - ( ) …(i)
In Fig. 2, C¢ is CM.
m a b l m l a l b
1 1 2 2
( ) ( ) + - = - + - …(ii)
Substituting Eq. (i) in Eq. (ii),
m b l m l b
1 1 2 2
( ) ( ) - = -
or m b m l m l m b
1 1 1 2 2 2
- = -
or ( ) m m b m l m l
1 2 1 1 2 2
+ = +
 
or         b
m l m l
m m
=
+
+
1 1 2 2
1 2
6. x
x dm
dm
CM
=
ò
ò
 
where, dm = mass of element of length dx.
          =
ò
ò
x dx A
dx A
r
r
          =
æ
è
ç
ö
ø
÷
æ
è
ç
ö
ø
÷
ò
ò
x
x
l
dx
x
l
a
l
x
l
0
0
2
2
0
2
2
0
r
r
(Q r r =
0
2
2
x
l
)
          =
ò
ò
x dx
x dx
l
l
3
0
2
0
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 171
A =
2
p
a
4
2
2
A = a
1
a
2
a a
a
O
b
a
O
X
Y
(       )
a
4
,
b
4
l
a
C m
1
m
2
l
2
b
l
1
m
1
m
2
C'
Fig. 1
Fig. 2
dx
x O
          = ×
é
ë
ê
ù
û
ú
3
4
3
4
0
x
x
l
          =
3
4
l
7. x
CM
=
´ + ´
+
1 10 2 12
1 2
        =
34
3
 m
     v
CM
=
´ - + ´ +
+
1 6 2 4
1 2
( ) ( )
  = +
-
2
3
1
ms
x¢
CM
 (new position of CM) 
        = +
æ
è
ç
ö
ø
÷
-
34
3
2
2
3
1
m s ms
        =
38
3
 m = 12.67 m
8. v
CM
=
´ + + ´ -
+
1 2 2 2 1
1 2
( ) ( )
= 0 ms
-2
\ Displacement of CM in 1 s = 0 m.
9. Acceleration ( ) a
®
 = -
-
10
2
j
^
ms
       v u a
® ® ®
= + t
         =
+ +
-
( )( ) ( )(
$ $
)
$
1 0 2 10 10
3
10
i j
j
                 = -
æ
è
ç
ö
ø
÷
20
3
10
3
$ $
i j m/s
New position vector ( ) r
1
®
 of particle A
   ( ) r s u a
1 0
2
1
2
® ® ® ®
= + + t t
    = + + + - ×
®
( ) ( )
^ ^ ^
10 20 0
1
2
10 1
2
i j j
      = + 10 15 i j
^ ^
m
New position vector ( ) r
2
®
 of particle B
r i j i j j
2
2
20 40 10 10 1
1
2
10 1
®
= + + + × + - × ( ) ( ) ( )
^ ^ ^ ^ ^
  = + 30 45 i j
^ ^
New position of CM
     R
r r ®
® ®
=
+
+
1 2
1 2
1 2
( ) ( )
       =
+ + + 10 15 60 90
3
i j i j
^ ^ ^ ^
       =
+ 70 105
3
i j
^ ^
 m
10.
(a)  3
0 0 1 12
0 1
=
× + × ´
+
m
m .
Þ m = 0.3 kg
(b) Momentum of system = Momentum of CM
           = + ´
-
( . )
^
m 01 6
1
kg ms j
           =
-
2.4 kgms j
^ 1
(c) v
v ®
® ®
=
+
+
CM
.3) 0.10)
0.3 .1
m
( ( 0 0
0
   v v
m
® ®
=
4
4
CM
       = ´
-
4
3
6
1
j
^
ms
       =
-
8
1
j
^
m s
11.   A t
m
· =0s
  B t
m
· =
2
100 ( ) ms
Position of 1st particle ( ) A at t = 300 ms
s
1
3 2
1
2
10 300 10 = ´ ´ ´
-
( )
     =0.45 m
Position of 2nd particle ( ) B at t = 300 ms
   (B is at the position of A at t = 100 ms)
    s
2
3 2
1
2
100 200 10 = ´ ´ ´
-
( )
      =0.20 m 
\ Position of CM =
´ + ´
+
2 0.2 0.45
2
m m
m m
= 28.3 cm
172 | Mechanics-1
1 kg
–1
6ms
+ ive
2 kg
10 m 10 m
–1
4ms
m
2 kg 1 kg
–1
2 ms
–1
1 ms
+ ive
12 m
O
CM
–1
6 j ms
 
m kg
3 m
0.10 kg
^
Velocity of 1st particle ( ) A  at t = 300 ms
   v
1
3
10 300 10 = ´ ´
-
             =3 ms
-1
Velocity of 2nd particle at t = 300 ms
   v
2
3 1
10 200 10 = ´ ´
- -
ms
           =
-
2
1
ms
\       v
m m
m m
CM
=
´ + ´
+
2 2 3
2
            =
7
3
 =
-
2.33ms
1
12. 24
0 80
=
× + ×
+
m m
m m
A B
A B
or 24 80 ( ) m
A
+ = ´ 0.6 0.6
or       m
A
=1.4 kg
\ Total mass of system = + 1.4 kg 0.6 kg
            =2.0kg
          v t
CM
6.0 =
2
j
^
\                a t
CM
ms =
-
12
2
j
^
 
Net force acting on system (at t = 3 s)
= Total mass of system ´ (a
COM
 at t = 3 s)
= ´
-
2.0 kg ms 36
2
j
^
= 72 N j
^
13.
            x
xdm
dm
CM
=
ò
ò
             =
ò
ò
x Axdx
Axdx
L
o
L
0
( )
  
             =
ò
ò
x dx
xdx
L
L
2
0
0
             =
L
L
3
2
3
2
/
/
 
=
2
3
L   
14. Let x= displacement of wedge (30 kg)
towards right.
\ Displacement of block A towards right
(along x-axis) when it arrives at the
bottom of the wedge
= - QR x
= - 0.5 x
Now, as net force on the system (wedge +
block) along x-axis is zero, the position of
CM of the system, along x-axis, will not
change
\ 5 30 ( ) 0.5 - = x x
i.e., x =
0.5
7
 m
= 71.4 mm
15. As no external force acts on the system,
the velocity of CM will be zero.
i.e.,
m v m v
m m
A A B B
A B
+
+
= 0
i.e.,     
v
v
m
m
A
B
B
A
= - = -
2
1
(a) \ Ratio of speeds = 2
(b) 
p
p
m v
m v
m
m
m
m
A
B
A A
B B
A
B
B
A
= = -
æ
è
ç
ö
ø
÷ = - 1
(c) 
K
K
p m
p m
p
p
m
m
A
B
A A
B B
A
B
B
A
= = ´ =
2
2
2
2
2
2
2
1
/
/
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 173
dx
x
O
L
30° B (50 kg)
A
x R
X
Q
5 kg
1
A
A B
A B
F
A
F
B
Read More
122 docs

Top Courses for NEET

122 docs
Download as PDF
Explore Courses for NEET exam

Top Courses for NEET

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Sample Paper

,

Conservation of Linear Momentum- 2 | DC Pandey Solutions for NEET Physics

,

shortcuts and tricks

,

Extra Questions

,

Previous Year Questions with Solutions

,

Semester Notes

,

pdf

,

Exam

,

DC Pandey Solutions: Centre of Mass

,

Summary

,

Free

,

video lectures

,

Objective type Questions

,

mock tests for examination

,

Important questions

,

Viva Questions

,

DC Pandey Solutions: Centre of Mass

,

DC Pandey Solutions: Centre of Mass

,

past year papers

,

MCQs

,

study material

,

practice quizzes

,

Conservation of Linear Momentum- 2 | DC Pandey Solutions for NEET Physics

,

Conservation of Linear Momentum- 2 | DC Pandey Solutions for NEET Physics

,

ppt

;