NEET Exam  >  NEET Notes  >  DC Pandey Solutions for NEET Physics  >  DC Pandey Solutions: Centre of Mass, Conservation of Linear Momentum- 2

DC Pandey Solutions: Centre of Mass, Conservation of Linear Momentum- 2 | DC Pandey Solutions for NEET Physics PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Introductory Exercise 8.8
1. v v
0
sin cos ( ) a a b = +
v
0
cos sin ( ) a a b = + (Impact being elastic)
\ tan cot( ) a a b = +
or cot cot( )
p
a a b
2
- = +   
or          
p
a a b
2
- = +
or b
p
a = -
2
2
2. Speed after n impacts
Speed before first impact = = u gh ( ) 2
Speed before one impact = eu
Speed after 2 impacts = = e eu e u ( )
2
 
........ ......... ........ ........ ........ ......... 
Speed after n impacts = e u
n
Height ( ) H upto which the ball rebounds
after nth rebound
            H
e u
g
n
=
( )
2
2
              =
e u
g
n 2 2
2
              = × e h
n 2
3. mv MV + = + 0 0
Þ      V
m
M
v =
e=
Velocityof separation
Velocityofapproach
          =
-
-
V
v
0
0
          =
V
v
          =
m
M
4.
As the balls are of same size, the centres
of the balls P Q , and R will be at vertices
of an equilateral triangle when ball C just
strikes balls A and B symmetrically and
as such the balls A and B will follow the
path as shown below
Applying law of conservation of
momentum
mu= Resultant momentum of A and B
balls along the axis of X.
or mu mv = ° 2 30 cos
or u v = 2
3
2
   
or u v = 3
As the ball C will strike ball A (and as well 
as ball B) with velocity ucos 30°
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 169
a
v cos (a + b) a
v cos a
0
v
0
a
v sin a
0
v sin (a + b)
0
b
v
m M m
V
M
Before collision After collision
A B B A
Rest Rest
X
C
R
P
Q
B
A
u
Rest
Rest
ÐPRX = 30°
ÐQRX = 30°
v
30°
30°
C
A
v
B
X Angle O
A
Rest
Page 2


Introductory Exercise 8.8
1. v v
0
sin cos ( ) a a b = +
v
0
cos sin ( ) a a b = + (Impact being elastic)
\ tan cot( ) a a b = +
or cot cot( )
p
a a b
2
- = +   
or          
p
a a b
2
- = +
or b
p
a = -
2
2
2. Speed after n impacts
Speed before first impact = = u gh ( ) 2
Speed before one impact = eu
Speed after 2 impacts = = e eu e u ( )
2
 
........ ......... ........ ........ ........ ......... 
Speed after n impacts = e u
n
Height ( ) H upto which the ball rebounds
after nth rebound
            H
e u
g
n
=
( )
2
2
              =
e u
g
n 2 2
2
              = × e h
n 2
3. mv MV + = + 0 0
Þ      V
m
M
v =
e=
Velocityof separation
Velocityofapproach
          =
-
-
V
v
0
0
          =
V
v
          =
m
M
4.
As the balls are of same size, the centres
of the balls P Q , and R will be at vertices
of an equilateral triangle when ball C just
strikes balls A and B symmetrically and
as such the balls A and B will follow the
path as shown below
Applying law of conservation of
momentum
mu= Resultant momentum of A and B
balls along the axis of X.
or mu mv = ° 2 30 cos
or u v = 2
3
2
   
or u v = 3
As the ball C will strike ball A (and as well 
as ball B) with velocity ucos 30°
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 169
a
v cos (a + b) a
v cos a
0
v
0
a
v sin a
0
v sin (a + b)
0
b
v
m M m
V
M
Before collision After collision
A B B A
Rest Rest
X
C
R
P
Q
B
A
u
Rest
Rest
ÐPRX = 30°
ÐQRX = 30°
v
30°
30°
C
A
v
B
X Angle O
A
Rest
Velocity of approach of ball C towards ball A
            = ° - ucos30 0
            = ° ucos30
            =u 3
Velocity of separation of ball A away from
ball C = v
\            e
v
u
=
3
2
  =
v
v ( ) 3
3
2
               =
2
3
5. x-component of velocity
before impact = 2 i
^
\ after impact = - e2 i
^
            = - ´
1
2
2i
^
            = - i
^
y-component of velocity
before impact = 2 j
^
\ after impact = 2 j
^
\ Velocity after impact = - + i j
^ ^
2
6. At A, u u
| |
cos = q
    u u
^
= sinq
\ At B
u u
| |
cos = q      
u eu
^
= sinq     
\    
T
T
u
g
eu
g
e
1
2
2
2
1
= =
sin
sin
q
q
UsingT
u
g
=
é
ë
ê
ù
û
ú
^
2
R
R
u u
eu u
g
1
2
2
2
2
=
( sin )( cos )
( sin ) cos
q q
q q
   Using R
u u
g
=
é
ë
ê
ù
û
ú
^
2
| |
      =
1
e
H
H
u
g
eu
g
1
2
2
2
2
2
=
( sin )
( sin )
q
q
                    Using H
u
g
=
é
ë
ê
ù
û
ú
^
2
2
   =
1
2
e
AIEEE Corner
Subjective Questions (Level 1)
1.
  x
CM
=
× + × + × + ×
+ + +
1 0 2 1 3 1 4 0
1 2 3 4
      =
5
10
 m
    y
CM
=
× + × + × + ×
+ + +
1 0 2 0 3 1 4 1
1 2 3 4
      =
7
10
 m
170 | Mechanics-1
45°
2 j
2 i
45°
45°
X
v = 2i + 2j
^
^ ^
^
q
A
u sin q
H
1
e u sin q
B
T
1
T
2
H
2
R
2
R
1
u cos q
v
u sin q
B 2kg
C
3kg
D 4kg
A 1kg
P
(CM)
1 m
1 m 1 m
1 m
x
y
Page 3


Introductory Exercise 8.8
1. v v
0
sin cos ( ) a a b = +
v
0
cos sin ( ) a a b = + (Impact being elastic)
\ tan cot( ) a a b = +
or cot cot( )
p
a a b
2
- = +   
or          
p
a a b
2
- = +
or b
p
a = -
2
2
2. Speed after n impacts
Speed before first impact = = u gh ( ) 2
Speed before one impact = eu
Speed after 2 impacts = = e eu e u ( )
2
 
........ ......... ........ ........ ........ ......... 
Speed after n impacts = e u
n
Height ( ) H upto which the ball rebounds
after nth rebound
            H
e u
g
n
=
( )
2
2
              =
e u
g
n 2 2
2
              = × e h
n 2
3. mv MV + = + 0 0
Þ      V
m
M
v =
e=
Velocityof separation
Velocityofapproach
          =
-
-
V
v
0
0
          =
V
v
          =
m
M
4.
As the balls are of same size, the centres
of the balls P Q , and R will be at vertices
of an equilateral triangle when ball C just
strikes balls A and B symmetrically and
as such the balls A and B will follow the
path as shown below
Applying law of conservation of
momentum
mu= Resultant momentum of A and B
balls along the axis of X.
or mu mv = ° 2 30 cos
or u v = 2
3
2
   
or u v = 3
As the ball C will strike ball A (and as well 
as ball B) with velocity ucos 30°
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 169
a
v cos (a + b) a
v cos a
0
v
0
a
v sin a
0
v sin (a + b)
0
b
v
m M m
V
M
Before collision After collision
A B B A
Rest Rest
X
C
R
P
Q
B
A
u
Rest
Rest
ÐPRX = 30°
ÐQRX = 30°
v
30°
30°
C
A
v
B
X Angle O
A
Rest
Velocity of approach of ball C towards ball A
            = ° - ucos30 0
            = ° ucos30
            =u 3
Velocity of separation of ball A away from
ball C = v
\            e
v
u
=
3
2
  =
v
v ( ) 3
3
2
               =
2
3
5. x-component of velocity
before impact = 2 i
^
\ after impact = - e2 i
^
            = - ´
1
2
2i
^
            = - i
^
y-component of velocity
before impact = 2 j
^
\ after impact = 2 j
^
\ Velocity after impact = - + i j
^ ^
2
6. At A, u u
| |
cos = q
    u u
^
= sinq
\ At B
u u
| |
cos = q      
u eu
^
= sinq     
\    
T
T
u
g
eu
g
e
1
2
2
2
1
= =
sin
sin
q
q
UsingT
u
g
=
é
ë
ê
ù
û
ú
^
2
R
R
u u
eu u
g
1
2
2
2
2
=
( sin )( cos )
( sin ) cos
q q
q q
   Using R
u u
g
=
é
ë
ê
ù
û
ú
^
2
| |
      =
1
e
H
H
u
g
eu
g
1
2
2
2
2
2
=
( sin )
( sin )
q
q
                    Using H
u
g
=
é
ë
ê
ù
û
ú
^
2
2
   =
1
2
e
AIEEE Corner
Subjective Questions (Level 1)
1.
  x
CM
=
× + × + × + ×
+ + +
1 0 2 1 3 1 4 0
1 2 3 4
      =
5
10
 m
    y
CM
=
× + × + × + ×
+ + +
1 0 2 0 3 1 4 1
1 2 3 4
      =
7
10
 m
170 | Mechanics-1
45°
2 j
2 i
45°
45°
X
v = 2i + 2j
^
^ ^
^
q
A
u sin q
H
1
e u sin q
B
T
1
T
2
H
2
R
2
R
1
u cos q
v
u sin q
B 2kg
C
3kg
D 4kg
A 1kg
P
(CM)
1 m
1 m 1 m
1 m
x
y
   AP x y
2 2 2
= +
CM CM
 =
æ
è
ç
ö
ø
÷ +
æ
è
ç
ö
ø
÷
5
10
7
10
2 2
      =0.74m
2
2. x
A x A x
A A
CM
=
+
+
1 1 2 2
1 2
=
× + ×
+
a
a
a
a
a
2
2
2
2
0
4
4
p
p
( )
            =
+
p
p 4
a
3. Let A = area of rectangle
  x
A
A a
A
A
CM
=
× + -
æ
è
ç
ö
ø
÷
+ -
æ
è
ç
ö
ø
÷
0
4 4
4
      = - × ×
A
A
a
4
4
3 4
      = -
a
12
  y
A
A b
A
A
CM
=
× + -
æ
è
ç
ö
ø
÷
+ -
æ
è
ç
ö
ø
÷
0
4 4
4
     = -
b
12
Centre of mass - -
æ
è
ç
ö
ø
÷
a b
12 12
,
4.   x
V a b
V a
CM
=
× + -
æ
è
ç
ö
ø
÷
-
0
4
3
4
3
3
3
p
p
       =
-
-
4
3
4
3
4
3
3
3 3
p
p p
a b
R a
       = -
-
æ
è
ç
ö
ø
÷
a
R a
b
3
3 3
By symmetry y
CM
= 0
5. In Fig. 1,  C is CM.
\ m a m l a
1 2
= - ( ) …(i)
In Fig. 2, C¢ is CM.
m a b l m l a l b
1 1 2 2
( ) ( ) + - = - + - …(ii)
Substituting Eq. (i) in Eq. (ii),
m b l m l b
1 1 2 2
( ) ( ) - = -
or m b m l m l m b
1 1 1 2 2 2
- = -
or ( ) m m b m l m l
1 2 1 1 2 2
+ = +
 
or         b
m l m l
m m
=
+
+
1 1 2 2
1 2
6. x
x dm
dm
CM
=
ò
ò
 
where, dm = mass of element of length dx.
          =
ò
ò
x dx A
dx A
r
r
          =
æ
è
ç
ö
ø
÷
æ
è
ç
ö
ø
÷
ò
ò
x
x
l
dx
x
l
a
l
x
l
0
0
2
2
0
2
2
0
r
r
(Q r r =
0
2
2
x
l
)
          =
ò
ò
x dx
x dx
l
l
3
0
2
0
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 171
A =
2
p
a
4
2
2
A = a
1
a
2
a a
a
O
b
a
O
X
Y
(       )
a
4
,
b
4
l
a
C m
1
m
2
l
2
b
l
1
m
1
m
2
C'
Fig. 1
Fig. 2
dx
x O
Page 4


Introductory Exercise 8.8
1. v v
0
sin cos ( ) a a b = +
v
0
cos sin ( ) a a b = + (Impact being elastic)
\ tan cot( ) a a b = +
or cot cot( )
p
a a b
2
- = +   
or          
p
a a b
2
- = +
or b
p
a = -
2
2
2. Speed after n impacts
Speed before first impact = = u gh ( ) 2
Speed before one impact = eu
Speed after 2 impacts = = e eu e u ( )
2
 
........ ......... ........ ........ ........ ......... 
Speed after n impacts = e u
n
Height ( ) H upto which the ball rebounds
after nth rebound
            H
e u
g
n
=
( )
2
2
              =
e u
g
n 2 2
2
              = × e h
n 2
3. mv MV + = + 0 0
Þ      V
m
M
v =
e=
Velocityof separation
Velocityofapproach
          =
-
-
V
v
0
0
          =
V
v
          =
m
M
4.
As the balls are of same size, the centres
of the balls P Q , and R will be at vertices
of an equilateral triangle when ball C just
strikes balls A and B symmetrically and
as such the balls A and B will follow the
path as shown below
Applying law of conservation of
momentum
mu= Resultant momentum of A and B
balls along the axis of X.
or mu mv = ° 2 30 cos
or u v = 2
3
2
   
or u v = 3
As the ball C will strike ball A (and as well 
as ball B) with velocity ucos 30°
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 169
a
v cos (a + b) a
v cos a
0
v
0
a
v sin a
0
v sin (a + b)
0
b
v
m M m
V
M
Before collision After collision
A B B A
Rest Rest
X
C
R
P
Q
B
A
u
Rest
Rest
ÐPRX = 30°
ÐQRX = 30°
v
30°
30°
C
A
v
B
X Angle O
A
Rest
Velocity of approach of ball C towards ball A
            = ° - ucos30 0
            = ° ucos30
            =u 3
Velocity of separation of ball A away from
ball C = v
\            e
v
u
=
3
2
  =
v
v ( ) 3
3
2
               =
2
3
5. x-component of velocity
before impact = 2 i
^
\ after impact = - e2 i
^
            = - ´
1
2
2i
^
            = - i
^
y-component of velocity
before impact = 2 j
^
\ after impact = 2 j
^
\ Velocity after impact = - + i j
^ ^
2
6. At A, u u
| |
cos = q
    u u
^
= sinq
\ At B
u u
| |
cos = q      
u eu
^
= sinq     
\    
T
T
u
g
eu
g
e
1
2
2
2
1
= =
sin
sin
q
q
UsingT
u
g
=
é
ë
ê
ù
û
ú
^
2
R
R
u u
eu u
g
1
2
2
2
2
=
( sin )( cos )
( sin ) cos
q q
q q
   Using R
u u
g
=
é
ë
ê
ù
û
ú
^
2
| |
      =
1
e
H
H
u
g
eu
g
1
2
2
2
2
2
=
( sin )
( sin )
q
q
                    Using H
u
g
=
é
ë
ê
ù
û
ú
^
2
2
   =
1
2
e
AIEEE Corner
Subjective Questions (Level 1)
1.
  x
CM
=
× + × + × + ×
+ + +
1 0 2 1 3 1 4 0
1 2 3 4
      =
5
10
 m
    y
CM
=
× + × + × + ×
+ + +
1 0 2 0 3 1 4 1
1 2 3 4
      =
7
10
 m
170 | Mechanics-1
45°
2 j
2 i
45°
45°
X
v = 2i + 2j
^
^ ^
^
q
A
u sin q
H
1
e u sin q
B
T
1
T
2
H
2
R
2
R
1
u cos q
v
u sin q
B 2kg
C
3kg
D 4kg
A 1kg
P
(CM)
1 m
1 m 1 m
1 m
x
y
   AP x y
2 2 2
= +
CM CM
 =
æ
è
ç
ö
ø
÷ +
æ
è
ç
ö
ø
÷
5
10
7
10
2 2
      =0.74m
2
2. x
A x A x
A A
CM
=
+
+
1 1 2 2
1 2
=
× + ×
+
a
a
a
a
a
2
2
2
2
0
4
4
p
p
( )
            =
+
p
p 4
a
3. Let A = area of rectangle
  x
A
A a
A
A
CM
=
× + -
æ
è
ç
ö
ø
÷
+ -
æ
è
ç
ö
ø
÷
0
4 4
4
      = - × ×
A
A
a
4
4
3 4
      = -
a
12
  y
A
A b
A
A
CM
=
× + -
æ
è
ç
ö
ø
÷
+ -
æ
è
ç
ö
ø
÷
0
4 4
4
     = -
b
12
Centre of mass - -
æ
è
ç
ö
ø
÷
a b
12 12
,
4.   x
V a b
V a
CM
=
× + -
æ
è
ç
ö
ø
÷
-
0
4
3
4
3
3
3
p
p
       =
-
-
4
3
4
3
4
3
3
3 3
p
p p
a b
R a
       = -
-
æ
è
ç
ö
ø
÷
a
R a
b
3
3 3
By symmetry y
CM
= 0
5. In Fig. 1,  C is CM.
\ m a m l a
1 2
= - ( ) …(i)
In Fig. 2, C¢ is CM.
m a b l m l a l b
1 1 2 2
( ) ( ) + - = - + - …(ii)
Substituting Eq. (i) in Eq. (ii),
m b l m l b
1 1 2 2
( ) ( ) - = -
or m b m l m l m b
1 1 1 2 2 2
- = -
or ( ) m m b m l m l
1 2 1 1 2 2
+ = +
 
or         b
m l m l
m m
=
+
+
1 1 2 2
1 2
6. x
x dm
dm
CM
=
ò
ò
 
where, dm = mass of element of length dx.
          =
ò
ò
x dx A
dx A
r
r
          =
æ
è
ç
ö
ø
÷
æ
è
ç
ö
ø
÷
ò
ò
x
x
l
dx
x
l
a
l
x
l
0
0
2
2
0
2
2
0
r
r
(Q r r =
0
2
2
x
l
)
          =
ò
ò
x dx
x dx
l
l
3
0
2
0
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 171
A =
2
p
a
4
2
2
A = a
1
a
2
a a
a
O
b
a
O
X
Y
(       )
a
4
,
b
4
l
a
C m
1
m
2
l
2
b
l
1
m
1
m
2
C'
Fig. 1
Fig. 2
dx
x O
          = ×
é
ë
ê
ù
û
ú
3
4
3
4
0
x
x
l
          =
3
4
l
7. x
CM
=
´ + ´
+
1 10 2 12
1 2
        =
34
3
 m
     v
CM
=
´ - + ´ +
+
1 6 2 4
1 2
( ) ( )
  = +
-
2
3
1
ms
x¢
CM
 (new position of CM) 
        = +
æ
è
ç
ö
ø
÷
-
34
3
2
2
3
1
m s ms
        =
38
3
 m = 12.67 m
8. v
CM
=
´ + + ´ -
+
1 2 2 2 1
1 2
( ) ( )
= 0 ms
-2
\ Displacement of CM in 1 s = 0 m.
9. Acceleration ( ) a
®
 = -
-
10
2
j
^
ms
       v u a
® ® ®
= + t
         =
+ +
-
( )( ) ( )(
$ $
)
$
1 0 2 10 10
3
10
i j
j
                 = -
æ
è
ç
ö
ø
÷
20
3
10
3
$ $
i j m/s
New position vector ( ) r
1
®
 of particle A
   ( ) r s u a
1 0
2
1
2
® ® ® ®
= + + t t
    = + + + - ×
®
( ) ( )
^ ^ ^
10 20 0
1
2
10 1
2
i j j
      = + 10 15 i j
^ ^
m
New position vector ( ) r
2
®
 of particle B
r i j i j j
2
2
20 40 10 10 1
1
2
10 1
®
= + + + × + - × ( ) ( ) ( )
^ ^ ^ ^ ^
  = + 30 45 i j
^ ^
New position of CM
     R
r r ®
® ®
=
+
+
1 2
1 2
1 2
( ) ( )
       =
+ + + 10 15 60 90
3
i j i j
^ ^ ^ ^
       =
+ 70 105
3
i j
^ ^
 m
10.
(a)  3
0 0 1 12
0 1
=
× + × ´
+
m
m .
Þ m = 0.3 kg
(b) Momentum of system = Momentum of CM
           = + ´
-
( . )
^
m 01 6
1
kg ms j
           =
-
2.4 kgms j
^ 1
(c) v
v ®
® ®
=
+
+
CM
.3) 0.10)
0.3 .1
m
( ( 0 0
0
   v v
m
® ®
=
4
4
CM
       = ´
-
4
3
6
1
j
^
ms
       =
-
8
1
j
^
m s
11.   A t
m
· =0s
  B t
m
· =
2
100 ( ) ms
Position of 1st particle ( ) A at t = 300 ms
s
1
3 2
1
2
10 300 10 = ´ ´ ´
-
( )
     =0.45 m
Position of 2nd particle ( ) B at t = 300 ms
   (B is at the position of A at t = 100 ms)
    s
2
3 2
1
2
100 200 10 = ´ ´ ´
-
( )
      =0.20 m 
\ Position of CM =
´ + ´
+
2 0.2 0.45
2
m m
m m
= 28.3 cm
172 | Mechanics-1
1 kg
–1
6ms
+ ive
2 kg
10 m 10 m
–1
4ms
m
2 kg 1 kg
–1
2 ms
–1
1 ms
+ ive
12 m
O
CM
–1
6 j ms
 
m kg
3 m
0.10 kg
^
Page 5


Introductory Exercise 8.8
1. v v
0
sin cos ( ) a a b = +
v
0
cos sin ( ) a a b = + (Impact being elastic)
\ tan cot( ) a a b = +
or cot cot( )
p
a a b
2
- = +   
or          
p
a a b
2
- = +
or b
p
a = -
2
2
2. Speed after n impacts
Speed before first impact = = u gh ( ) 2
Speed before one impact = eu
Speed after 2 impacts = = e eu e u ( )
2
 
........ ......... ........ ........ ........ ......... 
Speed after n impacts = e u
n
Height ( ) H upto which the ball rebounds
after nth rebound
            H
e u
g
n
=
( )
2
2
              =
e u
g
n 2 2
2
              = × e h
n 2
3. mv MV + = + 0 0
Þ      V
m
M
v =
e=
Velocityof separation
Velocityofapproach
          =
-
-
V
v
0
0
          =
V
v
          =
m
M
4.
As the balls are of same size, the centres
of the balls P Q , and R will be at vertices
of an equilateral triangle when ball C just
strikes balls A and B symmetrically and
as such the balls A and B will follow the
path as shown below
Applying law of conservation of
momentum
mu= Resultant momentum of A and B
balls along the axis of X.
or mu mv = ° 2 30 cos
or u v = 2
3
2
   
or u v = 3
As the ball C will strike ball A (and as well 
as ball B) with velocity ucos 30°
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 169
a
v cos (a + b) a
v cos a
0
v
0
a
v sin a
0
v sin (a + b)
0
b
v
m M m
V
M
Before collision After collision
A B B A
Rest Rest
X
C
R
P
Q
B
A
u
Rest
Rest
ÐPRX = 30°
ÐQRX = 30°
v
30°
30°
C
A
v
B
X Angle O
A
Rest
Velocity of approach of ball C towards ball A
            = ° - ucos30 0
            = ° ucos30
            =u 3
Velocity of separation of ball A away from
ball C = v
\            e
v
u
=
3
2
  =
v
v ( ) 3
3
2
               =
2
3
5. x-component of velocity
before impact = 2 i
^
\ after impact = - e2 i
^
            = - ´
1
2
2i
^
            = - i
^
y-component of velocity
before impact = 2 j
^
\ after impact = 2 j
^
\ Velocity after impact = - + i j
^ ^
2
6. At A, u u
| |
cos = q
    u u
^
= sinq
\ At B
u u
| |
cos = q      
u eu
^
= sinq     
\    
T
T
u
g
eu
g
e
1
2
2
2
1
= =
sin
sin
q
q
UsingT
u
g
=
é
ë
ê
ù
û
ú
^
2
R
R
u u
eu u
g
1
2
2
2
2
=
( sin )( cos )
( sin ) cos
q q
q q
   Using R
u u
g
=
é
ë
ê
ù
û
ú
^
2
| |
      =
1
e
H
H
u
g
eu
g
1
2
2
2
2
2
=
( sin )
( sin )
q
q
                    Using H
u
g
=
é
ë
ê
ù
û
ú
^
2
2
   =
1
2
e
AIEEE Corner
Subjective Questions (Level 1)
1.
  x
CM
=
× + × + × + ×
+ + +
1 0 2 1 3 1 4 0
1 2 3 4
      =
5
10
 m
    y
CM
=
× + × + × + ×
+ + +
1 0 2 0 3 1 4 1
1 2 3 4
      =
7
10
 m
170 | Mechanics-1
45°
2 j
2 i
45°
45°
X
v = 2i + 2j
^
^ ^
^
q
A
u sin q
H
1
e u sin q
B
T
1
T
2
H
2
R
2
R
1
u cos q
v
u sin q
B 2kg
C
3kg
D 4kg
A 1kg
P
(CM)
1 m
1 m 1 m
1 m
x
y
   AP x y
2 2 2
= +
CM CM
 =
æ
è
ç
ö
ø
÷ +
æ
è
ç
ö
ø
÷
5
10
7
10
2 2
      =0.74m
2
2. x
A x A x
A A
CM
=
+
+
1 1 2 2
1 2
=
× + ×
+
a
a
a
a
a
2
2
2
2
0
4
4
p
p
( )
            =
+
p
p 4
a
3. Let A = area of rectangle
  x
A
A a
A
A
CM
=
× + -
æ
è
ç
ö
ø
÷
+ -
æ
è
ç
ö
ø
÷
0
4 4
4
      = - × ×
A
A
a
4
4
3 4
      = -
a
12
  y
A
A b
A
A
CM
=
× + -
æ
è
ç
ö
ø
÷
+ -
æ
è
ç
ö
ø
÷
0
4 4
4
     = -
b
12
Centre of mass - -
æ
è
ç
ö
ø
÷
a b
12 12
,
4.   x
V a b
V a
CM
=
× + -
æ
è
ç
ö
ø
÷
-
0
4
3
4
3
3
3
p
p
       =
-
-
4
3
4
3
4
3
3
3 3
p
p p
a b
R a
       = -
-
æ
è
ç
ö
ø
÷
a
R a
b
3
3 3
By symmetry y
CM
= 0
5. In Fig. 1,  C is CM.
\ m a m l a
1 2
= - ( ) …(i)
In Fig. 2, C¢ is CM.
m a b l m l a l b
1 1 2 2
( ) ( ) + - = - + - …(ii)
Substituting Eq. (i) in Eq. (ii),
m b l m l b
1 1 2 2
( ) ( ) - = -
or m b m l m l m b
1 1 1 2 2 2
- = -
or ( ) m m b m l m l
1 2 1 1 2 2
+ = +
 
or         b
m l m l
m m
=
+
+
1 1 2 2
1 2
6. x
x dm
dm
CM
=
ò
ò
 
where, dm = mass of element of length dx.
          =
ò
ò
x dx A
dx A
r
r
          =
æ
è
ç
ö
ø
÷
æ
è
ç
ö
ø
÷
ò
ò
x
x
l
dx
x
l
a
l
x
l
0
0
2
2
0
2
2
0
r
r
(Q r r =
0
2
2
x
l
)
          =
ò
ò
x dx
x dx
l
l
3
0
2
0
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 171
A =
2
p
a
4
2
2
A = a
1
a
2
a a
a
O
b
a
O
X
Y
(       )
a
4
,
b
4
l
a
C m
1
m
2
l
2
b
l
1
m
1
m
2
C'
Fig. 1
Fig. 2
dx
x O
          = ×
é
ë
ê
ù
û
ú
3
4
3
4
0
x
x
l
          =
3
4
l
7. x
CM
=
´ + ´
+
1 10 2 12
1 2
        =
34
3
 m
     v
CM
=
´ - + ´ +
+
1 6 2 4
1 2
( ) ( )
  = +
-
2
3
1
ms
x¢
CM
 (new position of CM) 
        = +
æ
è
ç
ö
ø
÷
-
34
3
2
2
3
1
m s ms
        =
38
3
 m = 12.67 m
8. v
CM
=
´ + + ´ -
+
1 2 2 2 1
1 2
( ) ( )
= 0 ms
-2
\ Displacement of CM in 1 s = 0 m.
9. Acceleration ( ) a
®
 = -
-
10
2
j
^
ms
       v u a
® ® ®
= + t
         =
+ +
-
( )( ) ( )(
$ $
)
$
1 0 2 10 10
3
10
i j
j
                 = -
æ
è
ç
ö
ø
÷
20
3
10
3
$ $
i j m/s
New position vector ( ) r
1
®
 of particle A
   ( ) r s u a
1 0
2
1
2
® ® ® ®
= + + t t
    = + + + - ×
®
( ) ( )
^ ^ ^
10 20 0
1
2
10 1
2
i j j
      = + 10 15 i j
^ ^
m
New position vector ( ) r
2
®
 of particle B
r i j i j j
2
2
20 40 10 10 1
1
2
10 1
®
= + + + × + - × ( ) ( ) ( )
^ ^ ^ ^ ^
  = + 30 45 i j
^ ^
New position of CM
     R
r r ®
® ®
=
+
+
1 2
1 2
1 2
( ) ( )
       =
+ + + 10 15 60 90
3
i j i j
^ ^ ^ ^
       =
+ 70 105
3
i j
^ ^
 m
10.
(a)  3
0 0 1 12
0 1
=
× + × ´
+
m
m .
Þ m = 0.3 kg
(b) Momentum of system = Momentum of CM
           = + ´
-
( . )
^
m 01 6
1
kg ms j
           =
-
2.4 kgms j
^ 1
(c) v
v ®
® ®
=
+
+
CM
.3) 0.10)
0.3 .1
m
( ( 0 0
0
   v v
m
® ®
=
4
4
CM
       = ´
-
4
3
6
1
j
^
ms
       =
-
8
1
j
^
m s
11.   A t
m
· =0s
  B t
m
· =
2
100 ( ) ms
Position of 1st particle ( ) A at t = 300 ms
s
1
3 2
1
2
10 300 10 = ´ ´ ´
-
( )
     =0.45 m
Position of 2nd particle ( ) B at t = 300 ms
   (B is at the position of A at t = 100 ms)
    s
2
3 2
1
2
100 200 10 = ´ ´ ´
-
( )
      =0.20 m 
\ Position of CM =
´ + ´
+
2 0.2 0.45
2
m m
m m
= 28.3 cm
172 | Mechanics-1
1 kg
–1
6ms
+ ive
2 kg
10 m 10 m
–1
4ms
m
2 kg 1 kg
–1
2 ms
–1
1 ms
+ ive
12 m
O
CM
–1
6 j ms
 
m kg
3 m
0.10 kg
^
Velocity of 1st particle ( ) A  at t = 300 ms
   v
1
3
10 300 10 = ´ ´
-
             =3 ms
-1
Velocity of 2nd particle at t = 300 ms
   v
2
3 1
10 200 10 = ´ ´
- -
ms
           =
-
2
1
ms
\       v
m m
m m
CM
=
´ + ´
+
2 2 3
2
            =
7
3
 =
-
2.33ms
1
12. 24
0 80
=
× + ×
+
m m
m m
A B
A B
or 24 80 ( ) m
A
+ = ´ 0.6 0.6
or       m
A
=1.4 kg
\ Total mass of system = + 1.4 kg 0.6 kg
            =2.0kg
          v t
CM
6.0 =
2
j
^
\                a t
CM
ms =
-
12
2
j
^
 
Net force acting on system (at t = 3 s)
= Total mass of system ´ (a
COM
 at t = 3 s)
= ´
-
2.0 kg ms 36
2
j
^
= 72 N j
^
13.
            x
xdm
dm
CM
=
ò
ò
             =
ò
ò
x Axdx
Axdx
L
o
L
0
( )
  
             =
ò
ò
x dx
xdx
L
L
2
0
0
             =
L
L
3
2
3
2
/
/
 
=
2
3
L   
14. Let x= displacement of wedge (30 kg)
towards right.
\ Displacement of block A towards right
(along x-axis) when it arrives at the
bottom of the wedge
= - QR x
= - 0.5 x
Now, as net force on the system (wedge +
block) along x-axis is zero, the position of
CM of the system, along x-axis, will not
change
\ 5 30 ( ) 0.5 - = x x
i.e., x =
0.5
7
 m
= 71.4 mm
15. As no external force acts on the system,
the velocity of CM will be zero.
i.e.,
m v m v
m m
A A B B
A B
+
+
= 0
i.e.,     
v
v
m
m
A
B
B
A
= - = -
2
1
(a) \ Ratio of speeds = 2
(b) 
p
p
m v
m v
m
m
m
m
A
B
A A
B B
A
B
B
A
= = -
æ
è
ç
ö
ø
÷ = - 1
(c) 
K
K
p m
p m
p
p
m
m
A
B
A A
B B
A
B
B
A
= = ´ =
2
2
2
2
2
2
2
1
/
/
Centre of Mass, Conservation of Linear Momentum, Impulse and Collision | 173
dx
x
O
L
30° B (50 kg)
A
x R
X
Q
5 kg
1
A
A B
A B
F
A
F
B
Read More
122 docs

Up next

122 docs
Download as PDF

Up next

Explore Courses for NEET exam

How to Prepare for NEET

Read our guide to prepare for NEET which is created by Toppers & the best Teachers
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Semester Notes

,

past year papers

,

DC Pandey Solutions: Centre of Mass

,

mock tests for examination

,

DC Pandey Solutions: Centre of Mass

,

video lectures

,

study material

,

ppt

,

DC Pandey Solutions: Centre of Mass

,

shortcuts and tricks

,

Extra Questions

,

Important questions

,

Summary

,

MCQs

,

Free

,

Conservation of Linear Momentum- 2 | DC Pandey Solutions for NEET Physics

,

Previous Year Questions with Solutions

,

Conservation of Linear Momentum- 2 | DC Pandey Solutions for NEET Physics

,

Sample Paper

,

Conservation of Linear Momentum- 2 | DC Pandey Solutions for NEET Physics

,

Viva Questions

,

Objective type Questions

,

pdf

,

practice quizzes

,

Exam

;