NEET Exam  >  NEET Notes  >  DC Pandey Solutions for NEET Physics  >  DC Pandey Solutions: Electromagnetic Induction- 3

DC Pandey Solutions: Electromagnetic Induction- 3 | DC Pandey Solutions for NEET Physics PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


24. i i e
t
=
-
0
/ t
Bi i e
T
0 0
=
- / t
t =
æ
è
ç
ö
ø
÷
T
B
ln
1
25. Given, i R P
0
2
= , 
L
R
= t 
when, choke coil is short circuited,
Total heat produced = Magnetic energy
stored in the choke coil
= =
æ
è
ç
ö
ø
÷ =
1
2
1
2
1
2
0
2
Li R
P
R
P ( ) t t
26. i i e
Rt
L
=
-
0
For current to be constant
i i =
0
e
Rt
L
-
= 1
Rt
L
= 0 = not possible.
27. To fi nal time con stant, short the bat tery and
find ef fec tive re sis tance in se ries with
in duc t or
R
R
e
=
2
t = =
L
R
L
R
e
2
28. When switch is at po si tion 1.
In steady state,
i
E
R
1
=
i
2
0 =
When switch is thrown to position 2.
i
E
R
1
= , i
E
R
2
= -
29.
1
2
1
4
1
2
2
0
2
Li L i =
æ
è
ç
ö
ø
÷
i
i
=
0
2
i e
i
t
0
0
1
2
-
æ
è
ç
ç
ö
ø
÷
÷
=
-
t
t = t ln2
Þ              t
L
=
2
2 ln
30. At the mo ment when switch is thrown to
po si tion 2, 
current in capacitor = current in inductor
just before throwing the switch to position 2,
Þ i
E
R
c
=
31. Ini tially, in duc tor of fer s in fi nite re sis tance ,
hence,
i = 0 and 
di
dt
= maximum
\        E V V V
L C R
= + +
But     V V
C R
= =0
Þ      V E
L
=
32. Same as Q.12 ob jec tive Ques tions (Level 2).
33. Let V
0
= Po ten tial of me tal li c rod,
V V B R V B R
B
- = =
0
2
2 2 ( ) w …(i )
V V B R V B R
C 0
2
2 2 - = = ( ) w …(ii)
Adding Eqs. (i) and (ii), we get
V V B R
B C
- = 4
2
w
34. e Blv
c
=
           v
v v
c
=
+
1 2
2
\ e Bl v v = +
1
2
1 2
( )  
or
            e B
dA
dt
=
dA l dx dx = +
1
2
1 2
( )   
    e Bl
dx
dt
dx
dt
= +
æ
è
ç
ö
ø
÷
1
2
1 2
= +
1
2
1 2
Bl v v ( ) 
125 
1
2
i
2
R
L
i
1
R
E
L
R
L
R
Þ
L
R/2
v
2
v
1
dx
1
dx
2
Page 2


24. i i e
t
=
-
0
/ t
Bi i e
T
0 0
=
- / t
t =
æ
è
ç
ö
ø
÷
T
B
ln
1
25. Given, i R P
0
2
= , 
L
R
= t 
when, choke coil is short circuited,
Total heat produced = Magnetic energy
stored in the choke coil
= =
æ
è
ç
ö
ø
÷ =
1
2
1
2
1
2
0
2
Li R
P
R
P ( ) t t
26. i i e
Rt
L
=
-
0
For current to be constant
i i =
0
e
Rt
L
-
= 1
Rt
L
= 0 = not possible.
27. To fi nal time con stant, short the bat tery and
find ef fec tive re sis tance in se ries with
in duc t or
R
R
e
=
2
t = =
L
R
L
R
e
2
28. When switch is at po si tion 1.
In steady state,
i
E
R
1
=
i
2
0 =
When switch is thrown to position 2.
i
E
R
1
= , i
E
R
2
= -
29.
1
2
1
4
1
2
2
0
2
Li L i =
æ
è
ç
ö
ø
÷
i
i
=
0
2
i e
i
t
0
0
1
2
-
æ
è
ç
ç
ö
ø
÷
÷
=
-
t
t = t ln2
Þ              t
L
=
2
2 ln
30. At the mo ment when switch is thrown to
po si tion 2, 
current in capacitor = current in inductor
just before throwing the switch to position 2,
Þ i
E
R
c
=
31. Ini tially, in duc tor of fer s in fi nite re sis tance ,
hence,
i = 0 and 
di
dt
= maximum
\        E V V V
L C R
= + +
But     V V
C R
= =0
Þ      V E
L
=
32. Same as Q.12 ob jec tive Ques tions (Level 2).
33. Let V
0
= Po ten tial of me tal li c rod,
V V B R V B R
B
- = =
0
2
2 2 ( ) w …(i )
V V B R V B R
C 0
2
2 2 - = = ( ) w …(ii)
Adding Eqs. (i) and (ii), we get
V V B R
B C
- = 4
2
w
34. e Blv
c
=
           v
v v
c
=
+
1 2
2
\ e Bl v v = +
1
2
1 2
( )  
or
            e B
dA
dt
=
dA l dx dx = +
1
2
1 2
( )   
    e Bl
dx
dt
dx
dt
= +
æ
è
ç
ö
ø
÷
1
2
1 2
= +
1
2
1 2
Bl v v ( ) 
125 
1
2
i
2
R
L
i
1
R
E
L
R
L
R
Þ
L
R/2
v
2
v
1
dx
1
dx
2
35. Ini tially, ca pac i tor of fer zero re sis tance and
in duc tor of fers in fin i te resistance.
Effective circuit is given by
i
E
R
= = 1 A
36 . i
E
R
e
R t
L
1
1
1
1
= -
æ
è
ç
ç
ö
ø
÷
÷
-
, i
E
R
e
t
R C
2
2
2
=
æ
è
ç
ç
ö
ø
÷
÷
-
       i i i = +
1 2
= -
æ
è
ç
ç
ö
ø
÷
÷
+
-
-
E
R
e
E
R
e
R t
L
t
R C
1 2
1
1
2
at t =
-
10 2
3
ln
 i e e = -
æ
è
ç
ç
ç
ö
ø
÷
÷
÷
+
-
´
´
-
-
-
20
10
1
20
10
10 10 2
10 10
10 2
3
3
3
ln ln
10 10
3
´ ´
-
0.1
   = -
æ
è
ç
ö
ø
÷ +
æ
è
ç
ö
ø
÷ = 2 1
1
2
2
1
2
2 A
37. | |
| |
i
e
R
A
R
dB
dt
= =
= =
- B A
R
B b a
R
0 0
2 2
2 [( ) ] p
=
- B b a
R
0
2 2
4 ( ) p
As inward magnetic field is increasing, net
current must be anticlockwise. Hence
current in inner circle will be clockwise.
38. From Q. 48 Subjective Questions (Level 1).
f = +
æ
è
ç
ö
ø
÷ m
ai a
x
m
p
0
2
1 ln
Case 1
x b = , a a =
f = +
æ
è
ç
ö
ø
÷ m
ai a
b
1
0
2
1
m
p
ln
=
+ æ
è
ç
ö
ø
÷
m
p
0
2
ai b a
b
ln
Case 2
x b a = -
a a =   
    f = +
-
æ
è
ç
ç
ö
ø
÷
÷
m
ai a
b a
2
0
2
1
m
p
ln
        =
-
æ
è
ç
ç
ö
ø
÷
÷
m
p
0
2
ai b
b a
ln
   < > = -
f - f
e
t
m m
2 1
   < > =
< >
= -
f - f
e
e
R Rt
m m
2 1
      q i t
m
R
m
= < > = -
f - f
2
1
    = -
+ æ
è
ç
ö
ø
÷ -
-
æ
è
ç
ö
ø
÷
é
ë
ê
ù
û
ú
m
p
0
2
ai
R
b a
b
b
b a
ln ln
       =
-
-
æ
è
ç
ç
ö
ø
÷
÷
m
p
0
2 2
2
ai
R
b
b a
ln
    | | ln q
ai
R
b
b a
=
-
æ
è
ç
ç
ö
ø
÷
÷
m
p
0
2 2
2
39. Mag netic flux linked with the coil.
     f = =
m
nBA
niA
r
m
0
2
    | | e
d
dt
m
=
f
Þ     iR
d
dt
m
=
f
 126
K
E = 20V
5W 4W
6W
C = 0.1mF
5W
ß
C = 0.1mF
R= 10W
2
i
2
i
1
E
R= 10W
1
L = 0.1mH
L = 10 mH
R
R
R
R
E = 5V
ß
E =5V
R/3
R/2
Þ
E =5V
5R/6=5 W
i
R
Page 3


24. i i e
t
=
-
0
/ t
Bi i e
T
0 0
=
- / t
t =
æ
è
ç
ö
ø
÷
T
B
ln
1
25. Given, i R P
0
2
= , 
L
R
= t 
when, choke coil is short circuited,
Total heat produced = Magnetic energy
stored in the choke coil
= =
æ
è
ç
ö
ø
÷ =
1
2
1
2
1
2
0
2
Li R
P
R
P ( ) t t
26. i i e
Rt
L
=
-
0
For current to be constant
i i =
0
e
Rt
L
-
= 1
Rt
L
= 0 = not possible.
27. To fi nal time con stant, short the bat tery and
find ef fec tive re sis tance in se ries with
in duc t or
R
R
e
=
2
t = =
L
R
L
R
e
2
28. When switch is at po si tion 1.
In steady state,
i
E
R
1
=
i
2
0 =
When switch is thrown to position 2.
i
E
R
1
= , i
E
R
2
= -
29.
1
2
1
4
1
2
2
0
2
Li L i =
æ
è
ç
ö
ø
÷
i
i
=
0
2
i e
i
t
0
0
1
2
-
æ
è
ç
ç
ö
ø
÷
÷
=
-
t
t = t ln2
Þ              t
L
=
2
2 ln
30. At the mo ment when switch is thrown to
po si tion 2, 
current in capacitor = current in inductor
just before throwing the switch to position 2,
Þ i
E
R
c
=
31. Ini tially, in duc tor of fer s in fi nite re sis tance ,
hence,
i = 0 and 
di
dt
= maximum
\        E V V V
L C R
= + +
But     V V
C R
= =0
Þ      V E
L
=
32. Same as Q.12 ob jec tive Ques tions (Level 2).
33. Let V
0
= Po ten tial of me tal li c rod,
V V B R V B R
B
- = =
0
2
2 2 ( ) w …(i )
V V B R V B R
C 0
2
2 2 - = = ( ) w …(ii)
Adding Eqs. (i) and (ii), we get
V V B R
B C
- = 4
2
w
34. e Blv
c
=
           v
v v
c
=
+
1 2
2
\ e Bl v v = +
1
2
1 2
( )  
or
            e B
dA
dt
=
dA l dx dx = +
1
2
1 2
( )   
    e Bl
dx
dt
dx
dt
= +
æ
è
ç
ö
ø
÷
1
2
1 2
= +
1
2
1 2
Bl v v ( ) 
125 
1
2
i
2
R
L
i
1
R
E
L
R
L
R
Þ
L
R/2
v
2
v
1
dx
1
dx
2
35. Ini tially, ca pac i tor of fer zero re sis tance and
in duc tor of fers in fin i te resistance.
Effective circuit is given by
i
E
R
= = 1 A
36 . i
E
R
e
R t
L
1
1
1
1
= -
æ
è
ç
ç
ö
ø
÷
÷
-
, i
E
R
e
t
R C
2
2
2
=
æ
è
ç
ç
ö
ø
÷
÷
-
       i i i = +
1 2
= -
æ
è
ç
ç
ö
ø
÷
÷
+
-
-
E
R
e
E
R
e
R t
L
t
R C
1 2
1
1
2
at t =
-
10 2
3
ln
 i e e = -
æ
è
ç
ç
ç
ö
ø
÷
÷
÷
+
-
´
´
-
-
-
20
10
1
20
10
10 10 2
10 10
10 2
3
3
3
ln ln
10 10
3
´ ´
-
0.1
   = -
æ
è
ç
ö
ø
÷ +
æ
è
ç
ö
ø
÷ = 2 1
1
2
2
1
2
2 A
37. | |
| |
i
e
R
A
R
dB
dt
= =
= =
- B A
R
B b a
R
0 0
2 2
2 [( ) ] p
=
- B b a
R
0
2 2
4 ( ) p
As inward magnetic field is increasing, net
current must be anticlockwise. Hence
current in inner circle will be clockwise.
38. From Q. 48 Subjective Questions (Level 1).
f = +
æ
è
ç
ö
ø
÷ m
ai a
x
m
p
0
2
1 ln
Case 1
x b = , a a =
f = +
æ
è
ç
ö
ø
÷ m
ai a
b
1
0
2
1
m
p
ln
=
+ æ
è
ç
ö
ø
÷
m
p
0
2
ai b a
b
ln
Case 2
x b a = -
a a =   
    f = +
-
æ
è
ç
ç
ö
ø
÷
÷
m
ai a
b a
2
0
2
1
m
p
ln
        =
-
æ
è
ç
ç
ö
ø
÷
÷
m
p
0
2
ai b
b a
ln
   < > = -
f - f
e
t
m m
2 1
   < > =
< >
= -
f - f
e
e
R Rt
m m
2 1
      q i t
m
R
m
= < > = -
f - f
2
1
    = -
+ æ
è
ç
ö
ø
÷ -
-
æ
è
ç
ö
ø
÷
é
ë
ê
ù
û
ú
m
p
0
2
ai
R
b a
b
b
b a
ln ln
       =
-
-
æ
è
ç
ç
ö
ø
÷
÷
m
p
0
2 2
2
ai
R
b
b a
ln
    | | ln q
ai
R
b
b a
=
-
æ
è
ç
ç
ö
ø
÷
÷
m
p
0
2 2
2
39. Mag netic flux linked with the coil.
     f = =
m
nBA
niA
r
m
0
2
    | | e
d
dt
m
=
f
Þ     iR
d
dt
m
=
f
 126
K
E = 20V
5W 4W
6W
C = 0.1mF
5W
ß
C = 0.1mF
R= 10W
2
i
2
i
1
E
R= 10W
1
L = 0.1mH
L = 10 mH
R
R
R
R
E = 5V
ß
E =5V
R/3
R/2
Þ
E =5V
5R/6=5 W
i
R
  
dq
dt
R
d
dt
m
=
f
 Þ dq
R
d
m
= f
1
     q
nA
rR
di
niA
rR
i
= =
ò
m m
0
0
0
2 2
40. In duced elec tric field in side the re gion of
vary in g mag n eti c fiel ds,
E r
d B
d t
r t x r t x = = + = +
1
2
1
2
6 2 3
2 2
( ) ( ) V/m
At, t = 2.0 s and r
R
= =
2
1.25 cm
      = ´
-
1.25 10
2
 m
           E x = ´ ´ ´ +
-
3 10 4
2
1.25 ( )
=0.3 V/m
         F eE = = ´ ´
-
1.6 0.3 10
19
    = ´
-
48 10
21
 N
41. E r
dB
dt
=
1
2
 Þ E r µ
42. As in ward mag netic field is in creas ing,
in duced elec tric field must be anticlockwise.
43. e
d
dt
a
dB
dt
a B
m
=
f
= = p p
2 2
0
44. E
e
a
aB = =
2
1
2
0
p
45. t a = = qEa i
a = =
´
qEa
ma
q aB a
ma
2
0
2
1
2
           =
qB
m
0
2
46. P t i t = = = × tw t a a ( )
2
      = ´ ma
q B
m
t
2
2
0
2
2
m
At t =1 s
P
q B a
m
=
2
0
2 2
4
47. i
e
R
A
R
dB
dt
= = ×
dB
dt
= 2T/s, A = ´ = 0.2 0.4 0.08 m
2
\    i =
´
´ =
0.08
1.0 1
2 16 A [ Q R r b l = ´ + ( ) 2 ]
As outward magnetic field is increasing,
induced current must be clockwise.
48. e B
dA
dt
A
dB
dt
Blv A
dB
dt
= + = +
At t = 2 s,
B = 4 T, A vt = ´ - = 0.2 0.4 0.06 m ( )
2
    v=5 cm/s = 0.05 m / s
\    e = - ´ ´ + ´ 4 2 0.2 0.05 0.06
     = - + = 0.04 0.12 0.08 V
49. F ilB
e
R
lB = =
=
´
´ ´
0.08
0.8
0.2
1
4
= 0.008 N
50. When ter mi nal ve loc ity is at tained,
power delivered by gravity = power dissipated
in two resistors
       mgv= + 0.76 1.2
          v=
´
=
1.96
0.2 9.8
1 m/s
51. e Blv = = ´ ´ = 0.6 0.6 1 1 V
P
e
R
1
2
1
=   
Þ R
e
P
1
2
1
2
= = =
( ) 0.6
0.76
0.47W
52. P
e
R
2
2
2
= 
Þ R
e
P
2
2
2
2
= = =
( ) 0.6
1.2
0.3W
127 
Page 4


24. i i e
t
=
-
0
/ t
Bi i e
T
0 0
=
- / t
t =
æ
è
ç
ö
ø
÷
T
B
ln
1
25. Given, i R P
0
2
= , 
L
R
= t 
when, choke coil is short circuited,
Total heat produced = Magnetic energy
stored in the choke coil
= =
æ
è
ç
ö
ø
÷ =
1
2
1
2
1
2
0
2
Li R
P
R
P ( ) t t
26. i i e
Rt
L
=
-
0
For current to be constant
i i =
0
e
Rt
L
-
= 1
Rt
L
= 0 = not possible.
27. To fi nal time con stant, short the bat tery and
find ef fec tive re sis tance in se ries with
in duc t or
R
R
e
=
2
t = =
L
R
L
R
e
2
28. When switch is at po si tion 1.
In steady state,
i
E
R
1
=
i
2
0 =
When switch is thrown to position 2.
i
E
R
1
= , i
E
R
2
= -
29.
1
2
1
4
1
2
2
0
2
Li L i =
æ
è
ç
ö
ø
÷
i
i
=
0
2
i e
i
t
0
0
1
2
-
æ
è
ç
ç
ö
ø
÷
÷
=
-
t
t = t ln2
Þ              t
L
=
2
2 ln
30. At the mo ment when switch is thrown to
po si tion 2, 
current in capacitor = current in inductor
just before throwing the switch to position 2,
Þ i
E
R
c
=
31. Ini tially, in duc tor of fer s in fi nite re sis tance ,
hence,
i = 0 and 
di
dt
= maximum
\        E V V V
L C R
= + +
But     V V
C R
= =0
Þ      V E
L
=
32. Same as Q.12 ob jec tive Ques tions (Level 2).
33. Let V
0
= Po ten tial of me tal li c rod,
V V B R V B R
B
- = =
0
2
2 2 ( ) w …(i )
V V B R V B R
C 0
2
2 2 - = = ( ) w …(ii)
Adding Eqs. (i) and (ii), we get
V V B R
B C
- = 4
2
w
34. e Blv
c
=
           v
v v
c
=
+
1 2
2
\ e Bl v v = +
1
2
1 2
( )  
or
            e B
dA
dt
=
dA l dx dx = +
1
2
1 2
( )   
    e Bl
dx
dt
dx
dt
= +
æ
è
ç
ö
ø
÷
1
2
1 2
= +
1
2
1 2
Bl v v ( ) 
125 
1
2
i
2
R
L
i
1
R
E
L
R
L
R
Þ
L
R/2
v
2
v
1
dx
1
dx
2
35. Ini tially, ca pac i tor of fer zero re sis tance and
in duc tor of fers in fin i te resistance.
Effective circuit is given by
i
E
R
= = 1 A
36 . i
E
R
e
R t
L
1
1
1
1
= -
æ
è
ç
ç
ö
ø
÷
÷
-
, i
E
R
e
t
R C
2
2
2
=
æ
è
ç
ç
ö
ø
÷
÷
-
       i i i = +
1 2
= -
æ
è
ç
ç
ö
ø
÷
÷
+
-
-
E
R
e
E
R
e
R t
L
t
R C
1 2
1
1
2
at t =
-
10 2
3
ln
 i e e = -
æ
è
ç
ç
ç
ö
ø
÷
÷
÷
+
-
´
´
-
-
-
20
10
1
20
10
10 10 2
10 10
10 2
3
3
3
ln ln
10 10
3
´ ´
-
0.1
   = -
æ
è
ç
ö
ø
÷ +
æ
è
ç
ö
ø
÷ = 2 1
1
2
2
1
2
2 A
37. | |
| |
i
e
R
A
R
dB
dt
= =
= =
- B A
R
B b a
R
0 0
2 2
2 [( ) ] p
=
- B b a
R
0
2 2
4 ( ) p
As inward magnetic field is increasing, net
current must be anticlockwise. Hence
current in inner circle will be clockwise.
38. From Q. 48 Subjective Questions (Level 1).
f = +
æ
è
ç
ö
ø
÷ m
ai a
x
m
p
0
2
1 ln
Case 1
x b = , a a =
f = +
æ
è
ç
ö
ø
÷ m
ai a
b
1
0
2
1
m
p
ln
=
+ æ
è
ç
ö
ø
÷
m
p
0
2
ai b a
b
ln
Case 2
x b a = -
a a =   
    f = +
-
æ
è
ç
ç
ö
ø
÷
÷
m
ai a
b a
2
0
2
1
m
p
ln
        =
-
æ
è
ç
ç
ö
ø
÷
÷
m
p
0
2
ai b
b a
ln
   < > = -
f - f
e
t
m m
2 1
   < > =
< >
= -
f - f
e
e
R Rt
m m
2 1
      q i t
m
R
m
= < > = -
f - f
2
1
    = -
+ æ
è
ç
ö
ø
÷ -
-
æ
è
ç
ö
ø
÷
é
ë
ê
ù
û
ú
m
p
0
2
ai
R
b a
b
b
b a
ln ln
       =
-
-
æ
è
ç
ç
ö
ø
÷
÷
m
p
0
2 2
2
ai
R
b
b a
ln
    | | ln q
ai
R
b
b a
=
-
æ
è
ç
ç
ö
ø
÷
÷
m
p
0
2 2
2
39. Mag netic flux linked with the coil.
     f = =
m
nBA
niA
r
m
0
2
    | | e
d
dt
m
=
f
Þ     iR
d
dt
m
=
f
 126
K
E = 20V
5W 4W
6W
C = 0.1mF
5W
ß
C = 0.1mF
R= 10W
2
i
2
i
1
E
R= 10W
1
L = 0.1mH
L = 10 mH
R
R
R
R
E = 5V
ß
E =5V
R/3
R/2
Þ
E =5V
5R/6=5 W
i
R
  
dq
dt
R
d
dt
m
=
f
 Þ dq
R
d
m
= f
1
     q
nA
rR
di
niA
rR
i
= =
ò
m m
0
0
0
2 2
40. In duced elec tric field in side the re gion of
vary in g mag n eti c fiel ds,
E r
d B
d t
r t x r t x = = + = +
1
2
1
2
6 2 3
2 2
( ) ( ) V/m
At, t = 2.0 s and r
R
= =
2
1.25 cm
      = ´
-
1.25 10
2
 m
           E x = ´ ´ ´ +
-
3 10 4
2
1.25 ( )
=0.3 V/m
         F eE = = ´ ´
-
1.6 0.3 10
19
    = ´
-
48 10
21
 N
41. E r
dB
dt
=
1
2
 Þ E r µ
42. As in ward mag netic field is in creas ing,
in duced elec tric field must be anticlockwise.
43. e
d
dt
a
dB
dt
a B
m
=
f
= = p p
2 2
0
44. E
e
a
aB = =
2
1
2
0
p
45. t a = = qEa i
a = =
´
qEa
ma
q aB a
ma
2
0
2
1
2
           =
qB
m
0
2
46. P t i t = = = × tw t a a ( )
2
      = ´ ma
q B
m
t
2
2
0
2
2
m
At t =1 s
P
q B a
m
=
2
0
2 2
4
47. i
e
R
A
R
dB
dt
= = ×
dB
dt
= 2T/s, A = ´ = 0.2 0.4 0.08 m
2
\    i =
´
´ =
0.08
1.0 1
2 16 A [ Q R r b l = ´ + ( ) 2 ]
As outward magnetic field is increasing,
induced current must be clockwise.
48. e B
dA
dt
A
dB
dt
Blv A
dB
dt
= + = +
At t = 2 s,
B = 4 T, A vt = ´ - = 0.2 0.4 0.06 m ( )
2
    v=5 cm/s = 0.05 m / s
\    e = - ´ ´ + ´ 4 2 0.2 0.05 0.06
     = - + = 0.04 0.12 0.08 V
49. F ilB
e
R
lB = =
=
´
´ ´
0.08
0.8
0.2
1
4
= 0.008 N
50. When ter mi nal ve loc ity is at tained,
power delivered by gravity = power dissipated
in two resistors
       mgv= + 0.76 1.2
          v=
´
=
1.96
0.2 9.8
1 m/s
51. e Blv = = ´ ´ = 0.6 0.6 1 1 V
P
e
R
1
2
1
=   
Þ R
e
P
1
2
1
2
= = =
( ) 0.6
0.76
0.47W
52. P
e
R
2
2
2
= 
Þ R
e
P
2
2
2
2
= = =
( ) 0.6
1.2
0.3W
127 
More than One Cor rect Op tions
1. e B v BLv =
æ
è
ç
ö
ø
÷ =
1
2
1
2
By Fleming’s left hand rule, P must be
positive w.r.t. Q.
2. d BdA Ba dx
m
f = =
=
m
p
0
2
a i
x
dx
f =
m
a i
i
m
p
0
2
2 ln
M
i
a
m
=
f
=
m
p
0
2
2 ln
If the loop is brought close to the wire, upward 
magnetic flux linked with the loop increases,
hence induced current will be clockwise.
3. f = Li = Henry-Am pere.
L
V
di dt
V dt
di
= =
/
 =
Volt-second
Ampere
4. t = =
L
R
1 s
i i e
E
R
e
t t
= - = -
- -
0
1 1 ( ) ( )
/ / t t
= -
-
4 1 ( ) e
t
   
At t = ln2,
            i A =2
Power supplied by battery, P EI = = 16  J/s.
Rate of dissipation of heat in across resistor
= = i R
2
8 J/s
V iR
R
= = 4 V     
       V V E V
a b R
- = - =4 V
5. In both the cases, mag netic flux linked with
in creases, so cur rent i
2
 de creases in or der to
op pose the change.
6. f = = ´ =
1
4 2 8 BA Wb, f =
2
0
    e
t
=
f - f
= =
2 1
8
80
0.1
 V
i
e
R
= = =
80
4
20 A
    q it = = ´ = 20 2 0.1 C
Current is not given as a function of time,
hence heat produced in the coil cannot be
determined.
7. In LC os cil la tions,
w =
1
L C
, f
L C
= =
w
p p 2
1
2
       T
f
LC = =
1
2p
       i q
q
LC
0 0
0
= = w
  
di
dt
q
q
LC
æ
è
ç
ö
ø
÷ = =
max
w
0
0
( )
max
V L
di
dt
q
C
L
=
æ
è
ç
ö
ø
÷ =
max
0
8. If mag netic field in creases, in duced elec tric
field will be anticlockwise and vice-versa.
9. q t = 2
2
i
dq
dt
t = = 4
di
dt
= 4 A/s    
As 
dq
dt
= Positive  
Charge on the capacitor is increasing, hence
current flows from a to b.
t = 1 s, q = 2 C,  i = 4 A    
di
dt
=4 A/s    
      V V L
di
dt
a b
- = = ´ = 1 4 4 V
V V
q
c
b c
- = = =
2
2
1 V  
  V V iR
c d
- = = ´ = 4 4 16 V
  V V
a d
- = + + = 4 1 16 21 V
10. V V Bl
a b
- =
1
2
2
w
V V Bl
c b
- =
1
2
2
w
            V V
a c
- =0
[Direction of velocity of rod a-c is parallel to
length a-c]
 128
dx x
I
a x
1H 4W
d
b
2F
+ – i
a
c
Page 5


24. i i e
t
=
-
0
/ t
Bi i e
T
0 0
=
- / t
t =
æ
è
ç
ö
ø
÷
T
B
ln
1
25. Given, i R P
0
2
= , 
L
R
= t 
when, choke coil is short circuited,
Total heat produced = Magnetic energy
stored in the choke coil
= =
æ
è
ç
ö
ø
÷ =
1
2
1
2
1
2
0
2
Li R
P
R
P ( ) t t
26. i i e
Rt
L
=
-
0
For current to be constant
i i =
0
e
Rt
L
-
= 1
Rt
L
= 0 = not possible.
27. To fi nal time con stant, short the bat tery and
find ef fec tive re sis tance in se ries with
in duc t or
R
R
e
=
2
t = =
L
R
L
R
e
2
28. When switch is at po si tion 1.
In steady state,
i
E
R
1
=
i
2
0 =
When switch is thrown to position 2.
i
E
R
1
= , i
E
R
2
= -
29.
1
2
1
4
1
2
2
0
2
Li L i =
æ
è
ç
ö
ø
÷
i
i
=
0
2
i e
i
t
0
0
1
2
-
æ
è
ç
ç
ö
ø
÷
÷
=
-
t
t = t ln2
Þ              t
L
=
2
2 ln
30. At the mo ment when switch is thrown to
po si tion 2, 
current in capacitor = current in inductor
just before throwing the switch to position 2,
Þ i
E
R
c
=
31. Ini tially, in duc tor of fer s in fi nite re sis tance ,
hence,
i = 0 and 
di
dt
= maximum
\        E V V V
L C R
= + +
But     V V
C R
= =0
Þ      V E
L
=
32. Same as Q.12 ob jec tive Ques tions (Level 2).
33. Let V
0
= Po ten tial of me tal li c rod,
V V B R V B R
B
- = =
0
2
2 2 ( ) w …(i )
V V B R V B R
C 0
2
2 2 - = = ( ) w …(ii)
Adding Eqs. (i) and (ii), we get
V V B R
B C
- = 4
2
w
34. e Blv
c
=
           v
v v
c
=
+
1 2
2
\ e Bl v v = +
1
2
1 2
( )  
or
            e B
dA
dt
=
dA l dx dx = +
1
2
1 2
( )   
    e Bl
dx
dt
dx
dt
= +
æ
è
ç
ö
ø
÷
1
2
1 2
= +
1
2
1 2
Bl v v ( ) 
125 
1
2
i
2
R
L
i
1
R
E
L
R
L
R
Þ
L
R/2
v
2
v
1
dx
1
dx
2
35. Ini tially, ca pac i tor of fer zero re sis tance and
in duc tor of fers in fin i te resistance.
Effective circuit is given by
i
E
R
= = 1 A
36 . i
E
R
e
R t
L
1
1
1
1
= -
æ
è
ç
ç
ö
ø
÷
÷
-
, i
E
R
e
t
R C
2
2
2
=
æ
è
ç
ç
ö
ø
÷
÷
-
       i i i = +
1 2
= -
æ
è
ç
ç
ö
ø
÷
÷
+
-
-
E
R
e
E
R
e
R t
L
t
R C
1 2
1
1
2
at t =
-
10 2
3
ln
 i e e = -
æ
è
ç
ç
ç
ö
ø
÷
÷
÷
+
-
´
´
-
-
-
20
10
1
20
10
10 10 2
10 10
10 2
3
3
3
ln ln
10 10
3
´ ´
-
0.1
   = -
æ
è
ç
ö
ø
÷ +
æ
è
ç
ö
ø
÷ = 2 1
1
2
2
1
2
2 A
37. | |
| |
i
e
R
A
R
dB
dt
= =
= =
- B A
R
B b a
R
0 0
2 2
2 [( ) ] p
=
- B b a
R
0
2 2
4 ( ) p
As inward magnetic field is increasing, net
current must be anticlockwise. Hence
current in inner circle will be clockwise.
38. From Q. 48 Subjective Questions (Level 1).
f = +
æ
è
ç
ö
ø
÷ m
ai a
x
m
p
0
2
1 ln
Case 1
x b = , a a =
f = +
æ
è
ç
ö
ø
÷ m
ai a
b
1
0
2
1
m
p
ln
=
+ æ
è
ç
ö
ø
÷
m
p
0
2
ai b a
b
ln
Case 2
x b a = -
a a =   
    f = +
-
æ
è
ç
ç
ö
ø
÷
÷
m
ai a
b a
2
0
2
1
m
p
ln
        =
-
æ
è
ç
ç
ö
ø
÷
÷
m
p
0
2
ai b
b a
ln
   < > = -
f - f
e
t
m m
2 1
   < > =
< >
= -
f - f
e
e
R Rt
m m
2 1
      q i t
m
R
m
= < > = -
f - f
2
1
    = -
+ æ
è
ç
ö
ø
÷ -
-
æ
è
ç
ö
ø
÷
é
ë
ê
ù
û
ú
m
p
0
2
ai
R
b a
b
b
b a
ln ln
       =
-
-
æ
è
ç
ç
ö
ø
÷
÷
m
p
0
2 2
2
ai
R
b
b a
ln
    | | ln q
ai
R
b
b a
=
-
æ
è
ç
ç
ö
ø
÷
÷
m
p
0
2 2
2
39. Mag netic flux linked with the coil.
     f = =
m
nBA
niA
r
m
0
2
    | | e
d
dt
m
=
f
Þ     iR
d
dt
m
=
f
 126
K
E = 20V
5W 4W
6W
C = 0.1mF
5W
ß
C = 0.1mF
R= 10W
2
i
2
i
1
E
R= 10W
1
L = 0.1mH
L = 10 mH
R
R
R
R
E = 5V
ß
E =5V
R/3
R/2
Þ
E =5V
5R/6=5 W
i
R
  
dq
dt
R
d
dt
m
=
f
 Þ dq
R
d
m
= f
1
     q
nA
rR
di
niA
rR
i
= =
ò
m m
0
0
0
2 2
40. In duced elec tric field in side the re gion of
vary in g mag n eti c fiel ds,
E r
d B
d t
r t x r t x = = + = +
1
2
1
2
6 2 3
2 2
( ) ( ) V/m
At, t = 2.0 s and r
R
= =
2
1.25 cm
      = ´
-
1.25 10
2
 m
           E x = ´ ´ ´ +
-
3 10 4
2
1.25 ( )
=0.3 V/m
         F eE = = ´ ´
-
1.6 0.3 10
19
    = ´
-
48 10
21
 N
41. E r
dB
dt
=
1
2
 Þ E r µ
42. As in ward mag netic field is in creas ing,
in duced elec tric field must be anticlockwise.
43. e
d
dt
a
dB
dt
a B
m
=
f
= = p p
2 2
0
44. E
e
a
aB = =
2
1
2
0
p
45. t a = = qEa i
a = =
´
qEa
ma
q aB a
ma
2
0
2
1
2
           =
qB
m
0
2
46. P t i t = = = × tw t a a ( )
2
      = ´ ma
q B
m
t
2
2
0
2
2
m
At t =1 s
P
q B a
m
=
2
0
2 2
4
47. i
e
R
A
R
dB
dt
= = ×
dB
dt
= 2T/s, A = ´ = 0.2 0.4 0.08 m
2
\    i =
´
´ =
0.08
1.0 1
2 16 A [ Q R r b l = ´ + ( ) 2 ]
As outward magnetic field is increasing,
induced current must be clockwise.
48. e B
dA
dt
A
dB
dt
Blv A
dB
dt
= + = +
At t = 2 s,
B = 4 T, A vt = ´ - = 0.2 0.4 0.06 m ( )
2
    v=5 cm/s = 0.05 m / s
\    e = - ´ ´ + ´ 4 2 0.2 0.05 0.06
     = - + = 0.04 0.12 0.08 V
49. F ilB
e
R
lB = =
=
´
´ ´
0.08
0.8
0.2
1
4
= 0.008 N
50. When ter mi nal ve loc ity is at tained,
power delivered by gravity = power dissipated
in two resistors
       mgv= + 0.76 1.2
          v=
´
=
1.96
0.2 9.8
1 m/s
51. e Blv = = ´ ´ = 0.6 0.6 1 1 V
P
e
R
1
2
1
=   
Þ R
e
P
1
2
1
2
= = =
( ) 0.6
0.76
0.47W
52. P
e
R
2
2
2
= 
Þ R
e
P
2
2
2
2
= = =
( ) 0.6
1.2
0.3W
127 
More than One Cor rect Op tions
1. e B v BLv =
æ
è
ç
ö
ø
÷ =
1
2
1
2
By Fleming’s left hand rule, P must be
positive w.r.t. Q.
2. d BdA Ba dx
m
f = =
=
m
p
0
2
a i
x
dx
f =
m
a i
i
m
p
0
2
2 ln
M
i
a
m
=
f
=
m
p
0
2
2 ln
If the loop is brought close to the wire, upward 
magnetic flux linked with the loop increases,
hence induced current will be clockwise.
3. f = Li = Henry-Am pere.
L
V
di dt
V dt
di
= =
/
 =
Volt-second
Ampere
4. t = =
L
R
1 s
i i e
E
R
e
t t
= - = -
- -
0
1 1 ( ) ( )
/ / t t
= -
-
4 1 ( ) e
t
   
At t = ln2,
            i A =2
Power supplied by battery, P EI = = 16  J/s.
Rate of dissipation of heat in across resistor
= = i R
2
8 J/s
V iR
R
= = 4 V     
       V V E V
a b R
- = - =4 V
5. In both the cases, mag netic flux linked with
in creases, so cur rent i
2
 de creases in or der to
op pose the change.
6. f = = ´ =
1
4 2 8 BA Wb, f =
2
0
    e
t
=
f - f
= =
2 1
8
80
0.1
 V
i
e
R
= = =
80
4
20 A
    q it = = ´ = 20 2 0.1 C
Current is not given as a function of time,
hence heat produced in the coil cannot be
determined.
7. In LC os cil la tions,
w =
1
L C
, f
L C
= =
w
p p 2
1
2
       T
f
LC = =
1
2p
       i q
q
LC
0 0
0
= = w
  
di
dt
q
q
LC
æ
è
ç
ö
ø
÷ = =
max
w
0
0
( )
max
V L
di
dt
q
C
L
=
æ
è
ç
ö
ø
÷ =
max
0
8. If mag netic field in creases, in duced elec tric
field will be anticlockwise and vice-versa.
9. q t = 2
2
i
dq
dt
t = = 4
di
dt
= 4 A/s    
As 
dq
dt
= Positive  
Charge on the capacitor is increasing, hence
current flows from a to b.
t = 1 s, q = 2 C,  i = 4 A    
di
dt
=4 A/s    
      V V L
di
dt
a b
- = = ´ = 1 4 4 V
V V
q
c
b c
- = = =
2
2
1 V  
  V V iR
c d
- = = ´ = 4 4 16 V
  V V
a d
- = + + = 4 1 16 21 V
10. V V Bl
a b
- =
1
2
2
w
V V Bl
c b
- =
1
2
2
w
            V V
a c
- =0
[Direction of velocity of rod a-c is parallel to
length a-c]
 128
dx x
I
a x
1H 4W
d
b
2F
+ – i
a
c
Match the Col umns
1.          [ ]
[ ]
[ ][ ]
[ ]
[ ][ ]
B
F
i l
= =
-
MLT
A L
2
   =
- -
[ ] ML T A
0 2 1
         [ ]
[ ][ ]
[ ]
[ ][ ]
[ ]
L
V dt
di
= =
-
ML T T
A
2 3
  =
- -
[ ] ML T A
2 2 2
          [ ] LC =[T ]
2
           [ ] [ ][ ] f =
m
B S
  = =
- - - -
[ [ ] [ ] ML T A ] L ML T A
0 2 1 2 2 2 1
2. i i e
t
= -
-
0
1 ( )
/t
            t = =
L
R
1 s
            i
E
R
0
5 = = A
V iR E e
R
t
= = -
-
( ) 1
V E V Et
L R
t
= - =
-
At t = 0,
V E
L
= = 10 V, V
R
= 0
at          t =1 s
V E e
e
L
= - = -
æ
è
ç
ö
ø
÷
-
( ) 1 1
1
10
1
 V
    V
e
R
=
10
 V
3. In LC oscillations,
w = =
´
=
1 1
1
1
4
2
LC
 rad/s
       q
0
4 = C
       i q
0 0
8 = = w A
  
di
dt
q
æ
è
ç
ö
ø
÷ = =
max
w
2
0
16 A/s.
When, q = 2 C
V V
q
C
L C
= = = 8 V
When, 
di
dt
di
dt
æ
è
ç
ö
ø
÷ =
æ
è
ç
ö
ø
÷ =
1
2
8
max
 A/s.
V V L
di
dt
C L
- = = ´ = 1 8 8 V
4. i
E
R
1
1
9
6
= = = 1.6 A
i
E
R
e e
R t
L
t
2
2
3
1 3 1
2
= - = -
-
-
( ) ( )
/
At t = (ln ) 2 s
V E i R qe
L
t
= - =
-
2 2
3 /
 =
q
2
1 3 /
V i R q e
R
t
2
2 2
3
1 = = -
-
( )
/
 
= -
æ
è
ç
ö
ø
÷ q 1
1
2
1 3 /
V i R
R
1
1 1
9 = = V
V V V
bc L R
= + =
2
9 V
(a ® s), (b ® s), (c ® p), (d ® p).
5. Induced emf
| | e = slope of f - t graph
=
-
-
=
4 0
2 0
2 V
| |
| |
i
e
R
= = =
2
2
1 A
| | | | q i t = = ´ = 1 2 2 C
As current i is constant
H i Rt = = ´ ´ =
2 2
1 2 2 4 ( ) J
129 
R
2
i
2
E
L
R
1
i
1
i
1
2
4
f(Wb)
t
Read More
122 docs

Top Courses for NEET

122 docs
Download as PDF
Explore Courses for NEET exam

Top Courses for NEET

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

ppt

,

study material

,

Extra Questions

,

DC Pandey Solutions: Electromagnetic Induction- 3 | DC Pandey Solutions for NEET Physics

,

Previous Year Questions with Solutions

,

Important questions

,

Viva Questions

,

Summary

,

practice quizzes

,

DC Pandey Solutions: Electromagnetic Induction- 3 | DC Pandey Solutions for NEET Physics

,

Free

,

video lectures

,

past year papers

,

mock tests for examination

,

MCQs

,

Objective type Questions

,

Semester Notes

,

Exam

,

pdf

,

Sample Paper

,

DC Pandey Solutions: Electromagnetic Induction- 3 | DC Pandey Solutions for NEET Physics

,

shortcuts and tricks

;