Page 1
PAGE # 1
PART : PHYSICS
Single Choice Type (,dy fodYih; izdkj)
This section contains 20 Single choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer,
out of which Only One is correct.
bl [k.M esa 20 ,dy fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. A block of mass m is suspended from a pulley in form of a circular disc of mass m & radius R. The system
is released from rest, find the angular velocity of disc when block has dropped by height h. (there is no
slipping between string & pulley)
,d m nzO;eku dk CykWd f?kjuh ls jLlh ds }kjk tqM+k gqvk gSA f?kjuh pdrh ds :i esa gSA ftldk nzO;eku m rFkk
f=kT;k R gSA ;fn fudk; dks fojke ls NksM+k tkrk gSA rc CykWd }kjk h Å¡pkbZ uhps vkus ij pdrh dk dks.kh; osx
gksxk (f?kjuh rFkk pdrh esa dksbZ fQlyu ugha gS)
m
m
(1)
3
gh 4
R
1
(2)
3
gh 2
R
1
(3)
3
gh 2
R (4)
3
gh 4
R
Ans. (1)
Sol. mgh =
2 2
2
1
mv
2
1
? ? ?
v = ?R (no slipping dksbZ fQlyu ugha)
mgh =
2
2
2 2
2
mR
2
1
R m
2
1
? ? ?
mgh =
2 2
R m
4
3
?
3
gh 4
R
1
R 3
gh 4
2
? ? ?
2. Three point masses 1kg, 1.5 kg, 2.5 kg are placed at the vertices of a triangle with sides 3cm, 4cm and
5cm as shown in the figure. The location of centre of mass with respect to 1kg mass is :
2.5 kg
5cm
4 cm
1 kg
3 cm
1.5 kg
(1) 0.6 cm to the right of 1 kg and 2 cm above 1 kg mass
(2) 0.9 cm to the right of 1kg and 2 cm above 1 kg mass
(3) 0.9 cm to the left of 1kg and 2 cm above 1kg mass
(4) 0.9 cm to the right of 1 kg and 1.5 cm above 1kg mass
Page 2
PAGE # 1
PART : PHYSICS
Single Choice Type (,dy fodYih; izdkj)
This section contains 20 Single choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer,
out of which Only One is correct.
bl [k.M esa 20 ,dy fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. A block of mass m is suspended from a pulley in form of a circular disc of mass m & radius R. The system
is released from rest, find the angular velocity of disc when block has dropped by height h. (there is no
slipping between string & pulley)
,d m nzO;eku dk CykWd f?kjuh ls jLlh ds }kjk tqM+k gqvk gSA f?kjuh pdrh ds :i esa gSA ftldk nzO;eku m rFkk
f=kT;k R gSA ;fn fudk; dks fojke ls NksM+k tkrk gSA rc CykWd }kjk h Å¡pkbZ uhps vkus ij pdrh dk dks.kh; osx
gksxk (f?kjuh rFkk pdrh esa dksbZ fQlyu ugha gS)
m
m
(1)
3
gh 4
R
1
(2)
3
gh 2
R
1
(3)
3
gh 2
R (4)
3
gh 4
R
Ans. (1)
Sol. mgh =
2 2
2
1
mv
2
1
? ? ?
v = ?R (no slipping dksbZ fQlyu ugha)
mgh =
2
2
2 2
2
mR
2
1
R m
2
1
? ? ?
mgh =
2 2
R m
4
3
?
3
gh 4
R
1
R 3
gh 4
2
? ? ?
2. Three point masses 1kg, 1.5 kg, 2.5 kg are placed at the vertices of a triangle with sides 3cm, 4cm and
5cm as shown in the figure. The location of centre of mass with respect to 1kg mass is :
2.5 kg
5cm
4 cm
1 kg
3 cm
1.5 kg
(1) 0.6 cm to the right of 1 kg and 2 cm above 1 kg mass
(2) 0.9 cm to the right of 1kg and 2 cm above 1 kg mass
(3) 0.9 cm to the left of 1kg and 2 cm above 1kg mass
(4) 0.9 cm to the right of 1 kg and 1.5 cm above 1kg mass
PAGE # 2
fp=k esa fn[kk, vuqlkj rhu fcUnq nzO;eku ftuds nzO;eku Øe'k% 1kg, 1.5kg rFkk 2.5kg gS] ,d f=kHkqt ds dksuksa ij
j[ks gSA f=kHkqt dh Hkqtk,sa Øe'k% 3 cm, 4cm rFkk 5cm gSA rc nzO;eku dsUnz dh fLFkfr 1kg nzO;eku ds lkis{k gksxh :
2.5 kg
5cm
4 cm
1 kg
3 cm
1.5 kg
(1) 1kg ds nka;h vksj 0.6 cm nwj rFkk 1kg nzO;eku ds 2 cm Åij
(2) 1kg ds nka;h vksj 0.9 cm nwj rFkk 1kg nzO;eku ds 2 cm Åij
(3) 1kg ds cka;h vksj 0.9 cm nwj rFkk 1kg nzO;eku ds 2 cm Åij
(4) 1 kg ds nka;h vksj 0.9 cm nwj rFkk 1kg nzO;eku ds 1.5 cm Åij
Ans. (2)
Sol. Take 1kg mass at origin
1 kg nzO;eku dks ewy fcUnq ysus ij
2.5 kg
5cm
4 cm
1 kg
3 cm
1.5 kg
Y
X
cm
1 0 1.5 3 2.5 0
X 0.9cm
5
? ? ? ? ?
? ?
cm
1 0 1.5 0 2.5 4
Y 2cm
5
? ? ? ? ?
? ?
3. In a single slit diffraction set up, second minima is observed at an angle of 60°. The expected position of
first minima is
,dy fNnz foorZu izfØ;k esa] 2
nd
fufEu"B (minima) 60° ds dks.k ij fn[kkbZ nsrk gS] rks 1
st
fufEu"B (minima) dh
visf{kr fLFkfr gksxh &
(1) 25° (2) 20° (3) 30° (4) 45°
Ans. (1)
Sol. For 2
nd
minima f}rh; fufEu"B ds fy,
d sin ? = 2 ?
sin ? =
2
3
(given)
?
4
3
d
?
?
… (i)
So for 1
st
minima is
blfy, izFke fufEu"B ds fy,
d sin ? = ?
sin ? =
4
3
d
?
?
(from equation (i) (lehdj.k (i) ls
? = 25.65° (from sin table) (sin rkfydk ls)
? ? ? 25
Page 3
PAGE # 1
PART : PHYSICS
Single Choice Type (,dy fodYih; izdkj)
This section contains 20 Single choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer,
out of which Only One is correct.
bl [k.M esa 20 ,dy fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. A block of mass m is suspended from a pulley in form of a circular disc of mass m & radius R. The system
is released from rest, find the angular velocity of disc when block has dropped by height h. (there is no
slipping between string & pulley)
,d m nzO;eku dk CykWd f?kjuh ls jLlh ds }kjk tqM+k gqvk gSA f?kjuh pdrh ds :i esa gSA ftldk nzO;eku m rFkk
f=kT;k R gSA ;fn fudk; dks fojke ls NksM+k tkrk gSA rc CykWd }kjk h Å¡pkbZ uhps vkus ij pdrh dk dks.kh; osx
gksxk (f?kjuh rFkk pdrh esa dksbZ fQlyu ugha gS)
m
m
(1)
3
gh 4
R
1
(2)
3
gh 2
R
1
(3)
3
gh 2
R (4)
3
gh 4
R
Ans. (1)
Sol. mgh =
2 2
2
1
mv
2
1
? ? ?
v = ?R (no slipping dksbZ fQlyu ugha)
mgh =
2
2
2 2
2
mR
2
1
R m
2
1
? ? ?
mgh =
2 2
R m
4
3
?
3
gh 4
R
1
R 3
gh 4
2
? ? ?
2. Three point masses 1kg, 1.5 kg, 2.5 kg are placed at the vertices of a triangle with sides 3cm, 4cm and
5cm as shown in the figure. The location of centre of mass with respect to 1kg mass is :
2.5 kg
5cm
4 cm
1 kg
3 cm
1.5 kg
(1) 0.6 cm to the right of 1 kg and 2 cm above 1 kg mass
(2) 0.9 cm to the right of 1kg and 2 cm above 1 kg mass
(3) 0.9 cm to the left of 1kg and 2 cm above 1kg mass
(4) 0.9 cm to the right of 1 kg and 1.5 cm above 1kg mass
PAGE # 2
fp=k esa fn[kk, vuqlkj rhu fcUnq nzO;eku ftuds nzO;eku Øe'k% 1kg, 1.5kg rFkk 2.5kg gS] ,d f=kHkqt ds dksuksa ij
j[ks gSA f=kHkqt dh Hkqtk,sa Øe'k% 3 cm, 4cm rFkk 5cm gSA rc nzO;eku dsUnz dh fLFkfr 1kg nzO;eku ds lkis{k gksxh :
2.5 kg
5cm
4 cm
1 kg
3 cm
1.5 kg
(1) 1kg ds nka;h vksj 0.6 cm nwj rFkk 1kg nzO;eku ds 2 cm Åij
(2) 1kg ds nka;h vksj 0.9 cm nwj rFkk 1kg nzO;eku ds 2 cm Åij
(3) 1kg ds cka;h vksj 0.9 cm nwj rFkk 1kg nzO;eku ds 2 cm Åij
(4) 1 kg ds nka;h vksj 0.9 cm nwj rFkk 1kg nzO;eku ds 1.5 cm Åij
Ans. (2)
Sol. Take 1kg mass at origin
1 kg nzO;eku dks ewy fcUnq ysus ij
2.5 kg
5cm
4 cm
1 kg
3 cm
1.5 kg
Y
X
cm
1 0 1.5 3 2.5 0
X 0.9cm
5
? ? ? ? ?
? ?
cm
1 0 1.5 0 2.5 4
Y 2cm
5
? ? ? ? ?
? ?
3. In a single slit diffraction set up, second minima is observed at an angle of 60°. The expected position of
first minima is
,dy fNnz foorZu izfØ;k esa] 2
nd
fufEu"B (minima) 60° ds dks.k ij fn[kkbZ nsrk gS] rks 1
st
fufEu"B (minima) dh
visf{kr fLFkfr gksxh &
(1) 25° (2) 20° (3) 30° (4) 45°
Ans. (1)
Sol. For 2
nd
minima f}rh; fufEu"B ds fy,
d sin ? = 2 ?
sin ? =
2
3
(given)
?
4
3
d
?
?
… (i)
So for 1
st
minima is
blfy, izFke fufEu"B ds fy,
d sin ? = ?
sin ? =
4
3
d
?
?
(from equation (i) (lehdj.k (i) ls
? = 25.65° (from sin table) (sin rkfydk ls)
? ? ? 25
PAGE # 3
4. There are two infinite plane sheets each having uniform surface charge density + ? C/m
2
. They are
inclined to each other at an angle 30° as shown in the figure. Electric field at any arbitrary point P is:
fp=k esa nks vuUr yEckbZ dh lery ifêdk gS ftudk le:i i`"Bh; vkos'k ?kuRo + ? C/m
2
gSA nksuksa ifêdk ,d nwljs
ls 30° dks.k ij >qdh gSA rc fp=kkuqlkj fdlh Hkh ;kn`fPNd fcUnq P ij fo|qr {ks=k gksxk:
30°
+ ?
+ ?
P
Y
X
(1)
0
3 1
ˆ ˆ 1– y – x
2 2 2
? ? ? ?
?
? ?
? ?
?
? ?
? ?
? ?
(2)
0
3 1
ˆ ˆ 1 y – x
2 2 2
? ? ? ?
?
? ? ?
? ?
?
? ?
? ?
? ?
(3)
0
3 1
ˆ ˆ 1– y x
2 2 2
? ? ? ?
?
? ? ?
? ?
?
? ?
? ?
? ?
(4)
0
3 1
ˆ ˆ 1 y x
2 2 2
? ? ? ?
?
? ? ? ?
? ?
?
? ?
? ?
? ?
Ans. (1)
Sol.
30°
+ ?
+ ?
P
60°
? ? ? ?
0 0 0
ˆ ˆ E cos60 –x – sin60 y
2 2 2
? ? ? ? ?
? ? ? ?
? ?
? ? ?
? ?
?
E
?
=
0
3 1
ˆ ˆ 1– y – x
2 2 2
? ? ? ?
?
? ?
? ?
?
? ?
? ?
? ?
5. A parallel plate capacitor with plate area A & plate separation d is filled with a dielectric material of
dielectric constant given by k = k 0(1 + ?x). Calculate capacitance of system: (given ?d << 1)
,d lekUrj iV~V la/kkfj=k ftldh lrg dk {ks=kQy A gS rFkk ifV~Vdkvksa ds e/; dh nwjh d gSA buds e/; ,d
ijkoS|qrkad inkFkZ Hkjk gSA inkFkZ dk ijkoS|qrkad fu;rkad k = k 0(1 + ?x) gSA rc fudk; dh /kkfjrk gksxh:
(fn;k gS ?d << 1)
x
(1) ? ?
2 2 0 0
d 1
d
A k
? ?
?
(2) ?
?
?
?
?
? ?
?
?
2
d
1
d
A k
0 0
(3) ? ? d 1
d 2
A k
0 0
? ?
?
(4) ?
?
?
?
?
? ?
?
?
2
d
1
d 2
A k
0 0
Ans. (2)
Page 4
PAGE # 1
PART : PHYSICS
Single Choice Type (,dy fodYih; izdkj)
This section contains 20 Single choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer,
out of which Only One is correct.
bl [k.M esa 20 ,dy fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. A block of mass m is suspended from a pulley in form of a circular disc of mass m & radius R. The system
is released from rest, find the angular velocity of disc when block has dropped by height h. (there is no
slipping between string & pulley)
,d m nzO;eku dk CykWd f?kjuh ls jLlh ds }kjk tqM+k gqvk gSA f?kjuh pdrh ds :i esa gSA ftldk nzO;eku m rFkk
f=kT;k R gSA ;fn fudk; dks fojke ls NksM+k tkrk gSA rc CykWd }kjk h Å¡pkbZ uhps vkus ij pdrh dk dks.kh; osx
gksxk (f?kjuh rFkk pdrh esa dksbZ fQlyu ugha gS)
m
m
(1)
3
gh 4
R
1
(2)
3
gh 2
R
1
(3)
3
gh 2
R (4)
3
gh 4
R
Ans. (1)
Sol. mgh =
2 2
2
1
mv
2
1
? ? ?
v = ?R (no slipping dksbZ fQlyu ugha)
mgh =
2
2
2 2
2
mR
2
1
R m
2
1
? ? ?
mgh =
2 2
R m
4
3
?
3
gh 4
R
1
R 3
gh 4
2
? ? ?
2. Three point masses 1kg, 1.5 kg, 2.5 kg are placed at the vertices of a triangle with sides 3cm, 4cm and
5cm as shown in the figure. The location of centre of mass with respect to 1kg mass is :
2.5 kg
5cm
4 cm
1 kg
3 cm
1.5 kg
(1) 0.6 cm to the right of 1 kg and 2 cm above 1 kg mass
(2) 0.9 cm to the right of 1kg and 2 cm above 1 kg mass
(3) 0.9 cm to the left of 1kg and 2 cm above 1kg mass
(4) 0.9 cm to the right of 1 kg and 1.5 cm above 1kg mass
PAGE # 2
fp=k esa fn[kk, vuqlkj rhu fcUnq nzO;eku ftuds nzO;eku Øe'k% 1kg, 1.5kg rFkk 2.5kg gS] ,d f=kHkqt ds dksuksa ij
j[ks gSA f=kHkqt dh Hkqtk,sa Øe'k% 3 cm, 4cm rFkk 5cm gSA rc nzO;eku dsUnz dh fLFkfr 1kg nzO;eku ds lkis{k gksxh :
2.5 kg
5cm
4 cm
1 kg
3 cm
1.5 kg
(1) 1kg ds nka;h vksj 0.6 cm nwj rFkk 1kg nzO;eku ds 2 cm Åij
(2) 1kg ds nka;h vksj 0.9 cm nwj rFkk 1kg nzO;eku ds 2 cm Åij
(3) 1kg ds cka;h vksj 0.9 cm nwj rFkk 1kg nzO;eku ds 2 cm Åij
(4) 1 kg ds nka;h vksj 0.9 cm nwj rFkk 1kg nzO;eku ds 1.5 cm Åij
Ans. (2)
Sol. Take 1kg mass at origin
1 kg nzO;eku dks ewy fcUnq ysus ij
2.5 kg
5cm
4 cm
1 kg
3 cm
1.5 kg
Y
X
cm
1 0 1.5 3 2.5 0
X 0.9cm
5
? ? ? ? ?
? ?
cm
1 0 1.5 0 2.5 4
Y 2cm
5
? ? ? ? ?
? ?
3. In a single slit diffraction set up, second minima is observed at an angle of 60°. The expected position of
first minima is
,dy fNnz foorZu izfØ;k esa] 2
nd
fufEu"B (minima) 60° ds dks.k ij fn[kkbZ nsrk gS] rks 1
st
fufEu"B (minima) dh
visf{kr fLFkfr gksxh &
(1) 25° (2) 20° (3) 30° (4) 45°
Ans. (1)
Sol. For 2
nd
minima f}rh; fufEu"B ds fy,
d sin ? = 2 ?
sin ? =
2
3
(given)
?
4
3
d
?
?
… (i)
So for 1
st
minima is
blfy, izFke fufEu"B ds fy,
d sin ? = ?
sin ? =
4
3
d
?
?
(from equation (i) (lehdj.k (i) ls
? = 25.65° (from sin table) (sin rkfydk ls)
? ? ? 25
PAGE # 3
4. There are two infinite plane sheets each having uniform surface charge density + ? C/m
2
. They are
inclined to each other at an angle 30° as shown in the figure. Electric field at any arbitrary point P is:
fp=k esa nks vuUr yEckbZ dh lery ifêdk gS ftudk le:i i`"Bh; vkos'k ?kuRo + ? C/m
2
gSA nksuksa ifêdk ,d nwljs
ls 30° dks.k ij >qdh gSA rc fp=kkuqlkj fdlh Hkh ;kn`fPNd fcUnq P ij fo|qr {ks=k gksxk:
30°
+ ?
+ ?
P
Y
X
(1)
0
3 1
ˆ ˆ 1– y – x
2 2 2
? ? ? ?
?
? ?
? ?
?
? ?
? ?
? ?
(2)
0
3 1
ˆ ˆ 1 y – x
2 2 2
? ? ? ?
?
? ? ?
? ?
?
? ?
? ?
? ?
(3)
0
3 1
ˆ ˆ 1– y x
2 2 2
? ? ? ?
?
? ? ?
? ?
?
? ?
? ?
? ?
(4)
0
3 1
ˆ ˆ 1 y x
2 2 2
? ? ? ?
?
? ? ? ?
? ?
?
? ?
? ?
? ?
Ans. (1)
Sol.
30°
+ ?
+ ?
P
60°
? ? ? ?
0 0 0
ˆ ˆ E cos60 –x – sin60 y
2 2 2
? ? ? ? ?
? ? ? ?
? ?
? ? ?
? ?
?
E
?
=
0
3 1
ˆ ˆ 1– y – x
2 2 2
? ? ? ?
?
? ?
? ?
?
? ?
? ?
? ?
5. A parallel plate capacitor with plate area A & plate separation d is filled with a dielectric material of
dielectric constant given by k = k 0(1 + ?x). Calculate capacitance of system: (given ?d << 1)
,d lekUrj iV~V la/kkfj=k ftldh lrg dk {ks=kQy A gS rFkk ifV~Vdkvksa ds e/; dh nwjh d gSA buds e/; ,d
ijkoS|qrkad inkFkZ Hkjk gSA inkFkZ dk ijkoS|qrkad fu;rkad k = k 0(1 + ?x) gSA rc fudk; dh /kkfjrk gksxh:
(fn;k gS ?d << 1)
x
(1) ? ?
2 2 0 0
d 1
d
A k
? ?
?
(2) ?
?
?
?
?
? ?
?
?
2
d
1
d
A k
0 0
(3) ? ? d 1
d 2
A k
0 0
? ?
?
(4) ?
?
?
?
?
? ?
?
?
2
d
1
d 2
A k
0 0
Ans. (2)
PAGE # 4
Sol. Capacitance of element ?kVd dh /kkfjrk =
dx
A k
0
?
dx
x
Capacitance of element ?kVd dh /kkfjrk, C' =
dx
A ) x 1 ( k
0 0
? ? ?
?
?
? ? ?
?
d
0
0 0
) x 1 ( A k
dx
' C
1
) d 1 ( n
A k
1
C
1
0 0
? ?
? ?
? ?
Given fn;k gS& ?d << 1
?
?
?
?
?
?
?
?
?
? ?
? ?
?
2
d
d
A k
1
C
1
2 2
0 0
?
?
?
?
?
? ?
?
?
?
2
d
1
A k
d
C
1
0 0
?
?
?
?
?
? ?
?
?
?
2
d
1
d
A k
C
0 0
6. A long solenoid of radius R carries a time dependent current I = I
0
t(1 – t). A ring of radius 2R is placed
coaxially near its centre. During the time interval 0 ? t ? 1, the induced current ?R and the induced emf VR
in the ring vary as:
(1) current will change its direction and its emf will be zero at t = 0.25sec.
(2) current will not change its direction & emf will be maximum at t = 0.5sec
(3) current will not change direction and emf will be zero at 0.25sec.
(4) current will change its direction and its emf will be zero at t = 0.5sec.
,d R f=kT;k dh ijhuyhdk ftlesa ,d le; fuHkZj /kkjk I = I
0
t(1 – t) izokfgr gks jgh gSA ,d 2R f=kT;k dh oy;
ifjuyhdk ds lek{kh; :i ls mlds dsUnz ds ikl fLFkr gSA le; vUrjky 0 ? t ? 1, ds nkSjku oy; esa izsjhr /kkjk ? R
vkSj izsfjr fo+|qr okgd cy V R ds laxr lgh fodYi gksxk
(1) /kkjk viuh fn'kk cnysxh vkSj fo|qr okgd cy le; t = 0.25sec ij 'kwU; gksxkA
(2) /kkjk viuh fn'kk ugha cnysxh vkSj fo|qr okgd cy le; t = 0.5sec ij vf/kdre gksxkA
(3) /kkjk viuh fn'kk ugha cnysxh vkSj fo|qr okgd cy le; t = 0.25sec ij 'kwU; gksxkA
(4) /kkjk viuh fn'kk cnysxh vkSj fo|qr okgd cy t = 0.5sec ij 'kwU; gksxkA
Ans. (4)
Sol. I = I 0t – I 0t
2
? = BA
? = ? 0nIA
V R =
dt
d
–
?
= – ? 0nAI 0 (1 – 2t)
VR = 0 at t =
2
1
Page 5
PAGE # 1
PART : PHYSICS
Single Choice Type (,dy fodYih; izdkj)
This section contains 20 Single choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer,
out of which Only One is correct.
bl [k.M esa 20 ,dy fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. A block of mass m is suspended from a pulley in form of a circular disc of mass m & radius R. The system
is released from rest, find the angular velocity of disc when block has dropped by height h. (there is no
slipping between string & pulley)
,d m nzO;eku dk CykWd f?kjuh ls jLlh ds }kjk tqM+k gqvk gSA f?kjuh pdrh ds :i esa gSA ftldk nzO;eku m rFkk
f=kT;k R gSA ;fn fudk; dks fojke ls NksM+k tkrk gSA rc CykWd }kjk h Å¡pkbZ uhps vkus ij pdrh dk dks.kh; osx
gksxk (f?kjuh rFkk pdrh esa dksbZ fQlyu ugha gS)
m
m
(1)
3
gh 4
R
1
(2)
3
gh 2
R
1
(3)
3
gh 2
R (4)
3
gh 4
R
Ans. (1)
Sol. mgh =
2 2
2
1
mv
2
1
? ? ?
v = ?R (no slipping dksbZ fQlyu ugha)
mgh =
2
2
2 2
2
mR
2
1
R m
2
1
? ? ?
mgh =
2 2
R m
4
3
?
3
gh 4
R
1
R 3
gh 4
2
? ? ?
2. Three point masses 1kg, 1.5 kg, 2.5 kg are placed at the vertices of a triangle with sides 3cm, 4cm and
5cm as shown in the figure. The location of centre of mass with respect to 1kg mass is :
2.5 kg
5cm
4 cm
1 kg
3 cm
1.5 kg
(1) 0.6 cm to the right of 1 kg and 2 cm above 1 kg mass
(2) 0.9 cm to the right of 1kg and 2 cm above 1 kg mass
(3) 0.9 cm to the left of 1kg and 2 cm above 1kg mass
(4) 0.9 cm to the right of 1 kg and 1.5 cm above 1kg mass
PAGE # 2
fp=k esa fn[kk, vuqlkj rhu fcUnq nzO;eku ftuds nzO;eku Øe'k% 1kg, 1.5kg rFkk 2.5kg gS] ,d f=kHkqt ds dksuksa ij
j[ks gSA f=kHkqt dh Hkqtk,sa Øe'k% 3 cm, 4cm rFkk 5cm gSA rc nzO;eku dsUnz dh fLFkfr 1kg nzO;eku ds lkis{k gksxh :
2.5 kg
5cm
4 cm
1 kg
3 cm
1.5 kg
(1) 1kg ds nka;h vksj 0.6 cm nwj rFkk 1kg nzO;eku ds 2 cm Åij
(2) 1kg ds nka;h vksj 0.9 cm nwj rFkk 1kg nzO;eku ds 2 cm Åij
(3) 1kg ds cka;h vksj 0.9 cm nwj rFkk 1kg nzO;eku ds 2 cm Åij
(4) 1 kg ds nka;h vksj 0.9 cm nwj rFkk 1kg nzO;eku ds 1.5 cm Åij
Ans. (2)
Sol. Take 1kg mass at origin
1 kg nzO;eku dks ewy fcUnq ysus ij
2.5 kg
5cm
4 cm
1 kg
3 cm
1.5 kg
Y
X
cm
1 0 1.5 3 2.5 0
X 0.9cm
5
? ? ? ? ?
? ?
cm
1 0 1.5 0 2.5 4
Y 2cm
5
? ? ? ? ?
? ?
3. In a single slit diffraction set up, second minima is observed at an angle of 60°. The expected position of
first minima is
,dy fNnz foorZu izfØ;k esa] 2
nd
fufEu"B (minima) 60° ds dks.k ij fn[kkbZ nsrk gS] rks 1
st
fufEu"B (minima) dh
visf{kr fLFkfr gksxh &
(1) 25° (2) 20° (3) 30° (4) 45°
Ans. (1)
Sol. For 2
nd
minima f}rh; fufEu"B ds fy,
d sin ? = 2 ?
sin ? =
2
3
(given)
?
4
3
d
?
?
… (i)
So for 1
st
minima is
blfy, izFke fufEu"B ds fy,
d sin ? = ?
sin ? =
4
3
d
?
?
(from equation (i) (lehdj.k (i) ls
? = 25.65° (from sin table) (sin rkfydk ls)
? ? ? 25
PAGE # 3
4. There are two infinite plane sheets each having uniform surface charge density + ? C/m
2
. They are
inclined to each other at an angle 30° as shown in the figure. Electric field at any arbitrary point P is:
fp=k esa nks vuUr yEckbZ dh lery ifêdk gS ftudk le:i i`"Bh; vkos'k ?kuRo + ? C/m
2
gSA nksuksa ifêdk ,d nwljs
ls 30° dks.k ij >qdh gSA rc fp=kkuqlkj fdlh Hkh ;kn`fPNd fcUnq P ij fo|qr {ks=k gksxk:
30°
+ ?
+ ?
P
Y
X
(1)
0
3 1
ˆ ˆ 1– y – x
2 2 2
? ? ? ?
?
? ?
? ?
?
? ?
? ?
? ?
(2)
0
3 1
ˆ ˆ 1 y – x
2 2 2
? ? ? ?
?
? ? ?
? ?
?
? ?
? ?
? ?
(3)
0
3 1
ˆ ˆ 1– y x
2 2 2
? ? ? ?
?
? ? ?
? ?
?
? ?
? ?
? ?
(4)
0
3 1
ˆ ˆ 1 y x
2 2 2
? ? ? ?
?
? ? ? ?
? ?
?
? ?
? ?
? ?
Ans. (1)
Sol.
30°
+ ?
+ ?
P
60°
? ? ? ?
0 0 0
ˆ ˆ E cos60 –x – sin60 y
2 2 2
? ? ? ? ?
? ? ? ?
? ?
? ? ?
? ?
?
E
?
=
0
3 1
ˆ ˆ 1– y – x
2 2 2
? ? ? ?
?
? ?
? ?
?
? ?
? ?
? ?
5. A parallel plate capacitor with plate area A & plate separation d is filled with a dielectric material of
dielectric constant given by k = k 0(1 + ?x). Calculate capacitance of system: (given ?d << 1)
,d lekUrj iV~V la/kkfj=k ftldh lrg dk {ks=kQy A gS rFkk ifV~Vdkvksa ds e/; dh nwjh d gSA buds e/; ,d
ijkoS|qrkad inkFkZ Hkjk gSA inkFkZ dk ijkoS|qrkad fu;rkad k = k 0(1 + ?x) gSA rc fudk; dh /kkfjrk gksxh:
(fn;k gS ?d << 1)
x
(1) ? ?
2 2 0 0
d 1
d
A k
? ?
?
(2) ?
?
?
?
?
? ?
?
?
2
d
1
d
A k
0 0
(3) ? ? d 1
d 2
A k
0 0
? ?
?
(4) ?
?
?
?
?
? ?
?
?
2
d
1
d 2
A k
0 0
Ans. (2)
PAGE # 4
Sol. Capacitance of element ?kVd dh /kkfjrk =
dx
A k
0
?
dx
x
Capacitance of element ?kVd dh /kkfjrk, C' =
dx
A ) x 1 ( k
0 0
? ? ?
?
?
? ? ?
?
d
0
0 0
) x 1 ( A k
dx
' C
1
) d 1 ( n
A k
1
C
1
0 0
? ?
? ?
? ?
Given fn;k gS& ?d << 1
?
?
?
?
?
?
?
?
?
? ?
? ?
?
2
d
d
A k
1
C
1
2 2
0 0
?
?
?
?
?
? ?
?
?
?
2
d
1
A k
d
C
1
0 0
?
?
?
?
?
? ?
?
?
?
2
d
1
d
A k
C
0 0
6. A long solenoid of radius R carries a time dependent current I = I
0
t(1 – t). A ring of radius 2R is placed
coaxially near its centre. During the time interval 0 ? t ? 1, the induced current ?R and the induced emf VR
in the ring vary as:
(1) current will change its direction and its emf will be zero at t = 0.25sec.
(2) current will not change its direction & emf will be maximum at t = 0.5sec
(3) current will not change direction and emf will be zero at 0.25sec.
(4) current will change its direction and its emf will be zero at t = 0.5sec.
,d R f=kT;k dh ijhuyhdk ftlesa ,d le; fuHkZj /kkjk I = I
0
t(1 – t) izokfgr gks jgh gSA ,d 2R f=kT;k dh oy;
ifjuyhdk ds lek{kh; :i ls mlds dsUnz ds ikl fLFkr gSA le; vUrjky 0 ? t ? 1, ds nkSjku oy; esa izsjhr /kkjk ? R
vkSj izsfjr fo+|qr okgd cy V R ds laxr lgh fodYi gksxk
(1) /kkjk viuh fn'kk cnysxh vkSj fo|qr okgd cy le; t = 0.25sec ij 'kwU; gksxkA
(2) /kkjk viuh fn'kk ugha cnysxh vkSj fo|qr okgd cy le; t = 0.5sec ij vf/kdre gksxkA
(3) /kkjk viuh fn'kk ugha cnysxh vkSj fo|qr okgd cy le; t = 0.25sec ij 'kwU; gksxkA
(4) /kkjk viuh fn'kk cnysxh vkSj fo|qr okgd cy t = 0.5sec ij 'kwU; gksxkA
Ans. (4)
Sol. I = I 0t – I 0t
2
? = BA
? = ? 0nIA
V R =
dt
d
–
?
= – ? 0nAI 0 (1 – 2t)
VR = 0 at t =
2
1
PAGE # 5
and rFkk ? R =
loop of ce tan sis Re
V
R
sèk dk izfrjk yqi
R
V
e
1/2
t
7. If 10% of intensity is passed from analyser, then, the angle by which analyser should be rotated such
that transmitted intensity becomes zero. (Assume no absorption by analyser and polarizer).
;fn ,d èkqzod ls 10% rhozrk xqtjrh gks rks èkqzod dks fdrus dks.k ls ?kqek;s tk;s fd fuxZr rhozrk 'kwU; gks tk;sA
(eku fyft,s dh /kzqod ls vo'kks"k.k 'kwU; gS)
(1) 60° (2) 18.4° (3) 45° (4) 71.6°
Ans. (B)
Sol. I = I 0 cos
2
? ?
? ?
2
0
0
cos
10
I
I
cos ? =
10
1
= 0.31 <
2
1
which is 0.707
So ? > 45° and rFkk 90 – ? < 45º so only one option is correct blfy, dsoy ,d fodYi lgh gksxkA
i.e. vFkkZr 18.4º
angle rotated should be ?kqek;k gqvk dks.k = 90° – 71.6° = 18.4°
8. Three moles of ideal gas A with
3
4
C
C
V
P
? is mixed with two moles of another ideal gas B with
3
5
C
C
V
P
? .
The
v
P
C
C
of mixture is (Assuming temperature is constant)
vkn'kZ xSl A ds 3 eksy ftlds fy, fd
3
4
C
C
V
P
? gS] dks nwljh vkn'kZ xSl B ds 2 eksy ftlds fy,
3
5
C
C
V
P
? gS] ds
lkFk feyk;k tkrk gS rks feJ.k dh
v
P
C
C
dk eku crkb, (rkieku dks ,d&leku eku ekfu;sA)
(1) 1.5 (2) 1.42 (3) 1.7 (4) 1.3
Ans. (2)
Sol.
1 –
R n
1 –
R n
1 –
R
n
1 –
R
n
C n C n
C n C n
2
2
1
1
2
2
2
1
1
1
V 2 V 1
P 2 P 1
mixture
2 1
2 1
?
?
?
?
?
?
?
?
?
?
?
? ?
on rearranging we get iqu O;ofLFkr djus ij,
1 –
n
1 –
n
1 –
n n
2
2
1
1
mix
2 1
?
?
?
?
?
?
;
3 / 2
2
3 / 1
3
1 –
5
mix
? ?
?
1 –
5
mix
?
= 9 + 3 = 12 ?
12
5
1
12
17
mixure
? ? ? ? ; ? mix = 1.42
Read More