Mechanical Engineering Exam  >  Mechanical Engineering Notes  >  Industrial Engineering  >  Industrial Engineering Formulas for GATE ME Exam

Industrial Engineering Formulas for GATE ME Exam | Industrial Engineering - Mechanical Engineering PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


 
 
 
 
 
 
Forecasting 
 
• Simple Moving Average- 
?? ?? =
1
?? (?? ?? + ?? ?? -1
+ ?? ?? -2
+ ?? ?? -3
+ ? ) 
• Moving Weight Average-  
Weight Moving Average =
? W
i
D
i
n
t=1
? W
i
n
i=1
 
• Single (Simple) Exponential Smoothing- 
?? ?? = ?? ?? -1
+ ?? (?? ?? -1
- ?? ?? -1
) 
???? ?? ?? = (1 - ?? )?? ?? -1
+ ?? ?? ?? -1
 
if previous forecasting is not given 
?? ?? = ?? ?? ?? + ?? (1 - ?? )?? ?? -1
+ ?? (1 - ?? )
2
?? ?? -2
… …. 
Where ?? ?? = Smoothed average forecast for period t 
?? ?? -1
=Previous period forecast 
?? =Smoothing constant 
• Linear Regression-                                ?? = ?? + ???? 
? ?? = ???? + ?? ? ?? 
? ???? = ?? ? ?? + ?? ? ?? 2
 
• Forecasting Error-                               
?? ?? = (?? ?? - ?? ?? ) 
• Bias-                                                     
???????? =
?? ?? ?(?? ?? - ?? ?? )
?? ?? =?? 
• Mean Absolute Deviation-               
?????? =
?? ?? ? |?? ?? - ?? ?? |
?? ?? =?? 
• Mean Square Error-                        
?????? = 
?? ?? ?(?? ?? - ?? ?? )
?? ?? ?? =?? 
• Mean Absolute Percentage Error-  
???????? =
?? ?? ?
|?? ?? - ?? ?? |
?? ?? ?? ?? =?? × 100 
Inventory 
If D= demand/year, ?? ?? =Order cost, ?? ?? = Carrying cost, P= Purchase price/unit 
 ?? *
=Economic Order Quantity, K= Production Rate and ?? ?? =Shortage  Cost/unit/period 
• Case-1 Purchase Model With Instantaneous Replenishment and Without Shortage-  
1. ?????? ?? *
= v
2?? ?? ?? ?? ??   at EOQ ?????????????????? ???????? = ?????????? ???????? 
2. ???? . ???? ?????????? =
?? ?? *
 
3. ???????? ?????????? ?????? ?????????? =
?? *
?? 
4. ?????????? ???????? = ???????? ???????? + ?????????????????? ???????? + ?????????? ???????? 
                      = (?? × ?? ) + (
?? 2
× ?? ?? ) + (
?? ?? × ?? ?? )= (?? × ?? ) + v2?? ?? ?? ?? ?? 
• Case-2 Manufacturing Model Without Shortage- 
 
Page 2


 
 
 
 
 
 
Forecasting 
 
• Simple Moving Average- 
?? ?? =
1
?? (?? ?? + ?? ?? -1
+ ?? ?? -2
+ ?? ?? -3
+ ? ) 
• Moving Weight Average-  
Weight Moving Average =
? W
i
D
i
n
t=1
? W
i
n
i=1
 
• Single (Simple) Exponential Smoothing- 
?? ?? = ?? ?? -1
+ ?? (?? ?? -1
- ?? ?? -1
) 
???? ?? ?? = (1 - ?? )?? ?? -1
+ ?? ?? ?? -1
 
if previous forecasting is not given 
?? ?? = ?? ?? ?? + ?? (1 - ?? )?? ?? -1
+ ?? (1 - ?? )
2
?? ?? -2
… …. 
Where ?? ?? = Smoothed average forecast for period t 
?? ?? -1
=Previous period forecast 
?? =Smoothing constant 
• Linear Regression-                                ?? = ?? + ???? 
? ?? = ???? + ?? ? ?? 
? ???? = ?? ? ?? + ?? ? ?? 2
 
• Forecasting Error-                               
?? ?? = (?? ?? - ?? ?? ) 
• Bias-                                                     
???????? =
?? ?? ?(?? ?? - ?? ?? )
?? ?? =?? 
• Mean Absolute Deviation-               
?????? =
?? ?? ? |?? ?? - ?? ?? |
?? ?? =?? 
• Mean Square Error-                        
?????? = 
?? ?? ?(?? ?? - ?? ?? )
?? ?? ?? =?? 
• Mean Absolute Percentage Error-  
???????? =
?? ?? ?
|?? ?? - ?? ?? |
?? ?? ?? ?? =?? × 100 
Inventory 
If D= demand/year, ?? ?? =Order cost, ?? ?? = Carrying cost, P= Purchase price/unit 
 ?? *
=Economic Order Quantity, K= Production Rate and ?? ?? =Shortage  Cost/unit/period 
• Case-1 Purchase Model With Instantaneous Replenishment and Without Shortage-  
1. ?????? ?? *
= v
2?? ?? ?? ?? ??   at EOQ ?????????????????? ???????? = ?????????? ???????? 
2. ???? . ???? ?????????? =
?? ?? *
 
3. ???????? ?????????? ?????? ?????????? =
?? *
?? 
4. ?????????? ???????? = ???????? ???????? + ?????????????????? ???????? + ?????????? ???????? 
                      = (?? × ?? ) + (
?? 2
× ?? ?? ) + (
?? ?? × ?? ?? )= (?? × ?? ) + v2?? ?? ?? ?? ?? 
• Case-2 Manufacturing Model Without Shortage- 
 
 
 
 
 
 
 
 
 
1. ?????? ?? *
=
v
2?? ?? ?? ?? ?? (1-
?? ?? )
 
2. ?? 1
=
?? *
?? 
3. ?? 2
=
?? *
(1-
?? ?? )
?? 
4. Total optimum cost = v2?? ?? ?? ?? ?? (1 -
?? ?? ) 
• Case 3 Purchase Model With Shortage- 
 
 
 
1. ?? = ?????? = v
2?? ?? ?? ?? ?? (
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) ,  ?? 2
= ?? - ?? 1
 
3. ?? =
?? ?? , ?? 1
=
?? 1
?? and ?? 2
=
?? 2
?? 
4. Total optimum cost =v2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) 
• Case 4 Manufacturing Model With Shortfall 
 
 
1. ?? = ?????? =
v
2?? ?? ?? ?? ?? ×(1-
?? ?? )
(
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) × (1 -
?? ?? ) 
Page 3


 
 
 
 
 
 
Forecasting 
 
• Simple Moving Average- 
?? ?? =
1
?? (?? ?? + ?? ?? -1
+ ?? ?? -2
+ ?? ?? -3
+ ? ) 
• Moving Weight Average-  
Weight Moving Average =
? W
i
D
i
n
t=1
? W
i
n
i=1
 
• Single (Simple) Exponential Smoothing- 
?? ?? = ?? ?? -1
+ ?? (?? ?? -1
- ?? ?? -1
) 
???? ?? ?? = (1 - ?? )?? ?? -1
+ ?? ?? ?? -1
 
if previous forecasting is not given 
?? ?? = ?? ?? ?? + ?? (1 - ?? )?? ?? -1
+ ?? (1 - ?? )
2
?? ?? -2
… …. 
Where ?? ?? = Smoothed average forecast for period t 
?? ?? -1
=Previous period forecast 
?? =Smoothing constant 
• Linear Regression-                                ?? = ?? + ???? 
? ?? = ???? + ?? ? ?? 
? ???? = ?? ? ?? + ?? ? ?? 2
 
• Forecasting Error-                               
?? ?? = (?? ?? - ?? ?? ) 
• Bias-                                                     
???????? =
?? ?? ?(?? ?? - ?? ?? )
?? ?? =?? 
• Mean Absolute Deviation-               
?????? =
?? ?? ? |?? ?? - ?? ?? |
?? ?? =?? 
• Mean Square Error-                        
?????? = 
?? ?? ?(?? ?? - ?? ?? )
?? ?? ?? =?? 
• Mean Absolute Percentage Error-  
???????? =
?? ?? ?
|?? ?? - ?? ?? |
?? ?? ?? ?? =?? × 100 
Inventory 
If D= demand/year, ?? ?? =Order cost, ?? ?? = Carrying cost, P= Purchase price/unit 
 ?? *
=Economic Order Quantity, K= Production Rate and ?? ?? =Shortage  Cost/unit/period 
• Case-1 Purchase Model With Instantaneous Replenishment and Without Shortage-  
1. ?????? ?? *
= v
2?? ?? ?? ?? ??   at EOQ ?????????????????? ???????? = ?????????? ???????? 
2. ???? . ???? ?????????? =
?? ?? *
 
3. ???????? ?????????? ?????? ?????????? =
?? *
?? 
4. ?????????? ???????? = ???????? ???????? + ?????????????????? ???????? + ?????????? ???????? 
                      = (?? × ?? ) + (
?? 2
× ?? ?? ) + (
?? ?? × ?? ?? )= (?? × ?? ) + v2?? ?? ?? ?? ?? 
• Case-2 Manufacturing Model Without Shortage- 
 
 
 
 
 
 
 
 
 
1. ?????? ?? *
=
v
2?? ?? ?? ?? ?? (1-
?? ?? )
 
2. ?? 1
=
?? *
?? 
3. ?? 2
=
?? *
(1-
?? ?? )
?? 
4. Total optimum cost = v2?? ?? ?? ?? ?? (1 -
?? ?? ) 
• Case 3 Purchase Model With Shortage- 
 
 
 
1. ?? = ?????? = v
2?? ?? ?? ?? ?? (
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) ,  ?? 2
= ?? - ?? 1
 
3. ?? =
?? ?? , ?? 1
=
?? 1
?? and ?? 2
=
?? 2
?? 
4. Total optimum cost =v2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) 
• Case 4 Manufacturing Model With Shortfall 
 
 
1. ?? = ?????? =
v
2?? ?? ?? ?? ?? ×(1-
?? ?? )
(
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) × (1 -
?? ?? ) 
 
 
 
 
 
 
3. ?? 1
= (1 -
?? ?? ) ?? - ?? 2
 
4. ?? =
?? ?? , ?? 1
=
?? 1
?? -?? and ?? 2
=
?? 1
?? 
1. ?? 3
=
?? 3
?? and ?? 4
=
?? 2
?? -??   
 
• Lead Time Demand + Safety Stock = Reorder Point 
PERT and CPM 
• EFT = EST + activity time 
• LFT = LST + Duration of activity 
 
• Total Float-  
 
 
• Free Float-  FFo= (Ej-Ei)-Tij 
 
• Independent Float -  
 
Example-  
 
 
1. Total float = L2 – (E1 + t12) = 57 – (20 + 19) = 18 
2. Free float = E2 – E1 – t12 = 0 
3. Independent float = E2 – (L1 + t12) = -18 
• PERT Expected time- ?? ?? =
?? 0
+4?? ?? +?? ?? 6
 
1. t0 = Optimistic time i.e., shortest possible time to complete the activity 
if all goes well. 
2. tp = Pessimistic time i.e., longest time that an activity could take if 
everything goes wrong. 
3. tm = Most likely time i.e., normal time of an activity would take. 
• Standard deviation-  
 
 
• Variance -  
 
 
• Crashing-  
 
• Standard Normal Variation (SNV)-  
 
Page 4


 
 
 
 
 
 
Forecasting 
 
• Simple Moving Average- 
?? ?? =
1
?? (?? ?? + ?? ?? -1
+ ?? ?? -2
+ ?? ?? -3
+ ? ) 
• Moving Weight Average-  
Weight Moving Average =
? W
i
D
i
n
t=1
? W
i
n
i=1
 
• Single (Simple) Exponential Smoothing- 
?? ?? = ?? ?? -1
+ ?? (?? ?? -1
- ?? ?? -1
) 
???? ?? ?? = (1 - ?? )?? ?? -1
+ ?? ?? ?? -1
 
if previous forecasting is not given 
?? ?? = ?? ?? ?? + ?? (1 - ?? )?? ?? -1
+ ?? (1 - ?? )
2
?? ?? -2
… …. 
Where ?? ?? = Smoothed average forecast for period t 
?? ?? -1
=Previous period forecast 
?? =Smoothing constant 
• Linear Regression-                                ?? = ?? + ???? 
? ?? = ???? + ?? ? ?? 
? ???? = ?? ? ?? + ?? ? ?? 2
 
• Forecasting Error-                               
?? ?? = (?? ?? - ?? ?? ) 
• Bias-                                                     
???????? =
?? ?? ?(?? ?? - ?? ?? )
?? ?? =?? 
• Mean Absolute Deviation-               
?????? =
?? ?? ? |?? ?? - ?? ?? |
?? ?? =?? 
• Mean Square Error-                        
?????? = 
?? ?? ?(?? ?? - ?? ?? )
?? ?? ?? =?? 
• Mean Absolute Percentage Error-  
???????? =
?? ?? ?
|?? ?? - ?? ?? |
?? ?? ?? ?? =?? × 100 
Inventory 
If D= demand/year, ?? ?? =Order cost, ?? ?? = Carrying cost, P= Purchase price/unit 
 ?? *
=Economic Order Quantity, K= Production Rate and ?? ?? =Shortage  Cost/unit/period 
• Case-1 Purchase Model With Instantaneous Replenishment and Without Shortage-  
1. ?????? ?? *
= v
2?? ?? ?? ?? ??   at EOQ ?????????????????? ???????? = ?????????? ???????? 
2. ???? . ???? ?????????? =
?? ?? *
 
3. ???????? ?????????? ?????? ?????????? =
?? *
?? 
4. ?????????? ???????? = ???????? ???????? + ?????????????????? ???????? + ?????????? ???????? 
                      = (?? × ?? ) + (
?? 2
× ?? ?? ) + (
?? ?? × ?? ?? )= (?? × ?? ) + v2?? ?? ?? ?? ?? 
• Case-2 Manufacturing Model Without Shortage- 
 
 
 
 
 
 
 
 
 
1. ?????? ?? *
=
v
2?? ?? ?? ?? ?? (1-
?? ?? )
 
2. ?? 1
=
?? *
?? 
3. ?? 2
=
?? *
(1-
?? ?? )
?? 
4. Total optimum cost = v2?? ?? ?? ?? ?? (1 -
?? ?? ) 
• Case 3 Purchase Model With Shortage- 
 
 
 
1. ?? = ?????? = v
2?? ?? ?? ?? ?? (
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) ,  ?? 2
= ?? - ?? 1
 
3. ?? =
?? ?? , ?? 1
=
?? 1
?? and ?? 2
=
?? 2
?? 
4. Total optimum cost =v2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) 
• Case 4 Manufacturing Model With Shortfall 
 
 
1. ?? = ?????? =
v
2?? ?? ?? ?? ?? ×(1-
?? ?? )
(
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) × (1 -
?? ?? ) 
 
 
 
 
 
 
3. ?? 1
= (1 -
?? ?? ) ?? - ?? 2
 
4. ?? =
?? ?? , ?? 1
=
?? 1
?? -?? and ?? 2
=
?? 1
?? 
1. ?? 3
=
?? 3
?? and ?? 4
=
?? 2
?? -??   
 
• Lead Time Demand + Safety Stock = Reorder Point 
PERT and CPM 
• EFT = EST + activity time 
• LFT = LST + Duration of activity 
 
• Total Float-  
 
 
• Free Float-  FFo= (Ej-Ei)-Tij 
 
• Independent Float -  
 
Example-  
 
 
1. Total float = L2 – (E1 + t12) = 57 – (20 + 19) = 18 
2. Free float = E2 – E1 – t12 = 0 
3. Independent float = E2 – (L1 + t12) = -18 
• PERT Expected time- ?? ?? =
?? 0
+4?? ?? +?? ?? 6
 
1. t0 = Optimistic time i.e., shortest possible time to complete the activity 
if all goes well. 
2. tp = Pessimistic time i.e., longest time that an activity could take if 
everything goes wrong. 
3. tm = Most likely time i.e., normal time of an activity would take. 
• Standard deviation-  
 
 
• Variance -  
 
 
• Crashing-  
 
• Standard Normal Variation (SNV)-  
 
 
 
 
 
 
 
Linear Programming 
Simplex Method Case 1. Maximization Problem 
3 1 5 2
/ 3 1 2 2 18 ( )
=+
+ ? -
MaxZ x x
s t x x I
 
1 4 ( )
2 6 ( )
1, 2 0
?-
?-
?
x II
x III
xx
 
Standard Form:  
Max Z = 3x1 + 5x2 + 0w1 + 0w2 + 0w3 
3x1 + 2x2 + w1 + 0w2 + 0w3  =  18 
x1 + 0x2 + 0w1 + w2 + 0w3  =  4  
0x1 + x2 + 0w1 + 0w2 + w3   =   6 
To prepare initial Table: 
Table - I  
 
•  Ij = (Zj-cj) = ( ?aij.ci)-cj  
Interpretation of  Simplex Table  
                  Table - I  
 
 
• Key Column ? Min Ij   [ Most Negative ]  
• Key Row ? Min positive ratio.  
How to get next table ? 
• Leaving variable : w3 
•  Entering variable : x2 
•  Key no. = 1 
•  For old key row : New No.= Old No./key No. 
•  For other rows: 
( .).
( .)
..
.
=-
CorrespondingKeyRowNo
CorrespondingKeyColumnNo
NewNo Old No
KeyNo
 
• 18 ? 18 - (6*2)/1 = 6 
• I(w3) = 0 ? 0 - [1*(-5)]/1 = 5 
Page 5


 
 
 
 
 
 
Forecasting 
 
• Simple Moving Average- 
?? ?? =
1
?? (?? ?? + ?? ?? -1
+ ?? ?? -2
+ ?? ?? -3
+ ? ) 
• Moving Weight Average-  
Weight Moving Average =
? W
i
D
i
n
t=1
? W
i
n
i=1
 
• Single (Simple) Exponential Smoothing- 
?? ?? = ?? ?? -1
+ ?? (?? ?? -1
- ?? ?? -1
) 
???? ?? ?? = (1 - ?? )?? ?? -1
+ ?? ?? ?? -1
 
if previous forecasting is not given 
?? ?? = ?? ?? ?? + ?? (1 - ?? )?? ?? -1
+ ?? (1 - ?? )
2
?? ?? -2
… …. 
Where ?? ?? = Smoothed average forecast for period t 
?? ?? -1
=Previous period forecast 
?? =Smoothing constant 
• Linear Regression-                                ?? = ?? + ???? 
? ?? = ???? + ?? ? ?? 
? ???? = ?? ? ?? + ?? ? ?? 2
 
• Forecasting Error-                               
?? ?? = (?? ?? - ?? ?? ) 
• Bias-                                                     
???????? =
?? ?? ?(?? ?? - ?? ?? )
?? ?? =?? 
• Mean Absolute Deviation-               
?????? =
?? ?? ? |?? ?? - ?? ?? |
?? ?? =?? 
• Mean Square Error-                        
?????? = 
?? ?? ?(?? ?? - ?? ?? )
?? ?? ?? =?? 
• Mean Absolute Percentage Error-  
???????? =
?? ?? ?
|?? ?? - ?? ?? |
?? ?? ?? ?? =?? × 100 
Inventory 
If D= demand/year, ?? ?? =Order cost, ?? ?? = Carrying cost, P= Purchase price/unit 
 ?? *
=Economic Order Quantity, K= Production Rate and ?? ?? =Shortage  Cost/unit/period 
• Case-1 Purchase Model With Instantaneous Replenishment and Without Shortage-  
1. ?????? ?? *
= v
2?? ?? ?? ?? ??   at EOQ ?????????????????? ???????? = ?????????? ???????? 
2. ???? . ???? ?????????? =
?? ?? *
 
3. ???????? ?????????? ?????? ?????????? =
?? *
?? 
4. ?????????? ???????? = ???????? ???????? + ?????????????????? ???????? + ?????????? ???????? 
                      = (?? × ?? ) + (
?? 2
× ?? ?? ) + (
?? ?? × ?? ?? )= (?? × ?? ) + v2?? ?? ?? ?? ?? 
• Case-2 Manufacturing Model Without Shortage- 
 
 
 
 
 
 
 
 
 
1. ?????? ?? *
=
v
2?? ?? ?? ?? ?? (1-
?? ?? )
 
2. ?? 1
=
?? *
?? 
3. ?? 2
=
?? *
(1-
?? ?? )
?? 
4. Total optimum cost = v2?? ?? ?? ?? ?? (1 -
?? ?? ) 
• Case 3 Purchase Model With Shortage- 
 
 
 
1. ?? = ?????? = v
2?? ?? ?? ?? ?? (
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) ,  ?? 2
= ?? - ?? 1
 
3. ?? =
?? ?? , ?? 1
=
?? 1
?? and ?? 2
=
?? 2
?? 
4. Total optimum cost =v2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) 
• Case 4 Manufacturing Model With Shortfall 
 
 
1. ?? = ?????? =
v
2?? ?? ?? ?? ?? ×(1-
?? ?? )
(
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) × (1 -
?? ?? ) 
 
 
 
 
 
 
3. ?? 1
= (1 -
?? ?? ) ?? - ?? 2
 
4. ?? =
?? ?? , ?? 1
=
?? 1
?? -?? and ?? 2
=
?? 1
?? 
1. ?? 3
=
?? 3
?? and ?? 4
=
?? 2
?? -??   
 
• Lead Time Demand + Safety Stock = Reorder Point 
PERT and CPM 
• EFT = EST + activity time 
• LFT = LST + Duration of activity 
 
• Total Float-  
 
 
• Free Float-  FFo= (Ej-Ei)-Tij 
 
• Independent Float -  
 
Example-  
 
 
1. Total float = L2 – (E1 + t12) = 57 – (20 + 19) = 18 
2. Free float = E2 – E1 – t12 = 0 
3. Independent float = E2 – (L1 + t12) = -18 
• PERT Expected time- ?? ?? =
?? 0
+4?? ?? +?? ?? 6
 
1. t0 = Optimistic time i.e., shortest possible time to complete the activity 
if all goes well. 
2. tp = Pessimistic time i.e., longest time that an activity could take if 
everything goes wrong. 
3. tm = Most likely time i.e., normal time of an activity would take. 
• Standard deviation-  
 
 
• Variance -  
 
 
• Crashing-  
 
• Standard Normal Variation (SNV)-  
 
 
 
 
 
 
 
Linear Programming 
Simplex Method Case 1. Maximization Problem 
3 1 5 2
/ 3 1 2 2 18 ( )
=+
+ ? -
MaxZ x x
s t x x I
 
1 4 ( )
2 6 ( )
1, 2 0
?-
?-
?
x II
x III
xx
 
Standard Form:  
Max Z = 3x1 + 5x2 + 0w1 + 0w2 + 0w3 
3x1 + 2x2 + w1 + 0w2 + 0w3  =  18 
x1 + 0x2 + 0w1 + w2 + 0w3  =  4  
0x1 + x2 + 0w1 + 0w2 + w3   =   6 
To prepare initial Table: 
Table - I  
 
•  Ij = (Zj-cj) = ( ?aij.ci)-cj  
Interpretation of  Simplex Table  
                  Table - I  
 
 
• Key Column ? Min Ij   [ Most Negative ]  
• Key Row ? Min positive ratio.  
How to get next table ? 
• Leaving variable : w3 
•  Entering variable : x2 
•  Key no. = 1 
•  For old key row : New No.= Old No./key No. 
•  For other rows: 
( .).
( .)
..
.
=-
CorrespondingKeyRowNo
CorrespondingKeyColumnNo
NewNo Old No
KeyNo
 
• 18 ? 18 - (6*2)/1 = 6 
• I(w3) = 0 ? 0 - [1*(-5)]/1 = 5 
 
 
 
 
 
 
Table - II 
 
• Key Column ? Min Ij  
• Key Row ? Min positive ratio 
Table - III 
  
• This is the final Table 
The Optimal Solution is   x1 = 2, x2 = 6 
                                        giving Z = 36   
Type of Solutions : Basic, Feasible/Infeasible, Optimal/  Non-Optimal, 
Unique/Alternative Optimal, Bounded/Unbounded, Degenerate/Non-Degenerate  
• Analysis of Solution 
1. This is a  Basic solution, as values of basic variables  are Positive  
2. This is a  feasible solution, as values of basic variables, not containing 
Artificial Variable, are Positive  and all constraints are satisfied 
3. This Feasible solution is an Optimal, as all values in Index Row are positive. 
4. If there is an Artificial Variable, as Basic variable in final  table,  it is called as 
Infeasible solution 
5. This solution is unique Optimal, as the number of zeroes are equal to number 
of basic variables in Index Row in final Table. 
6. If the number of zeroes are more than number of basic variables in Index Row 
in final  Table, it is a case of more than one optimal solutions. 
7. This is a Bounded Solution, as the values of all Basic variables in final table, 
are finite positive. 
8. This is a Non-degenerate Solution, as value of none of the basic variables is 
Zero ,  in final table. 
9. If value of at least one of the basic variables is Zero in Index Row in final  
Table, it is a Degenerate Solution. 
• Duality With Example 
1. Case-1 
Max.Z =  x1 - x2  + 3x3 
s/t   x1 +  x2  + x3  ?  10 
2 x1 -  x2  -  x3 ?  2 
2x1   -  2x2  - 3x3 ?  6 
x1 , x2, x3  ?  0 
Dual of this would be 
         Min Z = 10y1  +2y2  + 6y3 
                 s/t   y1 + 2 y2  + 2y3   ?   1 
                           y1 -  y2  - 2y3    ?  -1  
                          y1   -  y2  - 3y3   ?   3  
                                 y1 , y3 , y3   ?   0 ,  
Read More
30 videos|40 docs|30 tests

Top Courses for Mechanical Engineering

FAQs on Industrial Engineering Formulas for GATE ME Exam - Industrial Engineering - Mechanical Engineering

1. What are some important industrial engineering formulas that are frequently asked in the GATE ME Exam for Mechanical Engineering?
Ans. Some important industrial engineering formulas that are frequently asked in the GATE ME Exam for Mechanical Engineering include: 1. Time Study Formula: Time Study is a technique used to determine the standard time required to perform a specific task. The formula used for time study is: Standard Time = (Observed Time x Rating Factor) / Performance Rating 2. Work Sampling Formula: Work Sampling is a statistical technique used to determine the percentage of time spent on different activities in a work process. The formula used for work sampling is: Percentage of Time = (Number of Occurrences of an Activity / Total Number of Observations) x 100 3. Efficiency Formula: Efficiency is a measure of how well a process or system is performing. The formula used for efficiency calculation is: Efficiency = (Total Output / Total Input) x 100 4. Productivity Formula: Productivity is a measure of the output produced per unit of input. The formula used for productivity calculation is: Productivity = (Total Output / Total Input) 5. Break-even Analysis Formula: Break-even analysis is used to determine the point at which the total revenue equals the total cost, resulting in neither profit nor loss. The formula used for break-even analysis is: Break-even Point = Fixed Costs / (Selling Price per Unit - Variable Cost per Unit)
2. How can industrial engineering formulas help in the GATE ME Exam preparation for Mechanical Engineering?
Ans. Industrial engineering formulas play a crucial role in the GATE ME Exam preparation for Mechanical Engineering in the following ways: 1. Understanding Concepts: Learning and practicing industrial engineering formulas helps in understanding the underlying concepts and principles of industrial engineering. 2. Problem Solving: Industrial engineering formulas provide a structured approach to solving problems related to time study, work sampling, efficiency, productivity, break-even analysis, and other areas of industrial engineering. 3. Time Management: By knowing and applying industrial engineering formulas, students can solve numerical problems more efficiently, saving valuable time during the exam. 4. Scoring High Marks: Since industrial engineering formulas are frequently asked in the GATE ME Exam, having a strong command over these formulas increases the chances of scoring high marks in the exam. 5. Real-life Applications: Industrial engineering formulas are not only important for exams but also have practical applications in industries. Understanding these formulas helps in applying them to real-life scenarios.
3. Can you provide an example of how the time study formula is used in the GATE ME Exam?
Ans. Sure! Here's an example of how the time study formula is used in the GATE ME Exam: Suppose a time study is conducted to determine the standard time required to assemble a product. The observed time for assembling one unit is measured as 10 minutes, and the performance rating is determined as 90%. Now, we can calculate the standard time using the time study formula: Standard Time = (Observed Time x Rating Factor) / Performance Rating Standard Time = (10 minutes x 100) / 90 Standard Time = 11.11 minutes So, the standard time required to assemble one unit of the product is 11.11 minutes. This calculation helps in analyzing the efficiency and productivity of the assembly process.
4. How is efficiency different from productivity in the context of industrial engineering?
Ans. Efficiency and productivity are two important metrics used in the context of industrial engineering. Here's how they differ: Efficiency: Efficiency is a measure of how well a process or system is performing. It represents the ratio of output achieved to the input used. It is usually expressed as a percentage. Higher efficiency indicates that a process or system is utilizing its resources effectively and producing the desired output with minimum waste. Productivity: Productivity, on the other hand, is a measure of the output produced per unit of input. It represents the overall effectiveness of a system or process in converting inputs into outputs. It is usually measured in terms of units produced per unit of time or per unit of input. Higher productivity indicates that a system or process is capable of producing more output with the same level of input. In summary, efficiency focuses on how well resources are utilized, while productivity focuses on the overall output achieved relative to the input used.
5. How can break-even analysis be applied in real-life industrial scenarios?
Ans. Break-even analysis is a valuable tool used in real-life industrial scenarios to make informed decisions about pricing, production volume, and cost management. Here are some applications of break-even analysis in industrial scenarios: 1. Pricing Decisions: Break-even analysis helps determine the minimum selling price required to cover all costs and achieve the desired profit margin. It helps in setting competitive prices that ensure profitability. 2. Production Planning: Break-even analysis helps in determining the production volume required to cover all costs and avoid losses. It helps in optimizing production levels, allocating resources efficiently, and managing inventory. 3. Cost Management: Break-even analysis helps identify the cost structure of a business and highlights areas where costs can be reduced or controlled. It aids in identifying cost drivers and implementing cost-saving measures. 4. New Product Introduction: Break-even analysis helps assess the feasibility of introducing a new product by estimating the sales volume required to cover all costs and generate profits. It aids in evaluating the potential profitability of new product ventures. 5. Financial Decision-making: Break-even analysis provides insights into the financial health of a business and helps in making informed decisions related to investments, expansion, diversification, or downsizing. In conclusion, break-even analysis is a versatile tool that helps in various aspects of industrial decision-making, enabling businesses to optimize their operations and achieve profitability.
30 videos|40 docs|30 tests
Download as PDF
Explore Courses for Mechanical Engineering exam

Top Courses for Mechanical Engineering

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Previous Year Questions with Solutions

,

Objective type Questions

,

study material

,

shortcuts and tricks

,

Viva Questions

,

Free

,

Industrial Engineering Formulas for GATE ME Exam | Industrial Engineering - Mechanical Engineering

,

pdf

,

Semester Notes

,

MCQs

,

video lectures

,

mock tests for examination

,

Industrial Engineering Formulas for GATE ME Exam | Industrial Engineering - Mechanical Engineering

,

Summary

,

Industrial Engineering Formulas for GATE ME Exam | Industrial Engineering - Mechanical Engineering

,

practice quizzes

,

Exam

,

Extra Questions

,

past year papers

,

Important questions

,

Sample Paper

,

ppt

;