Download, print and study this document offline |
Page 1 Waves 2.1: Waves Motion General equation of wave: @ 2 y @x 2 = 1 v 2 @ 2 y @t 2 . Notation: Amplitude A, Frequency , Wavelength , Pe- riod T , Angular Frequency !, Wave Number k, T = 1 = 2 ! ; v =; k = 2 Progressive wave travelling with speed v: y =f(t x=v); +x; y =f(t +x=v); x Progressive sine wave: 2 x y A y =A sin(kx !t) =A sin(2 (x= t=T )) 2.2: Waves on a String Speed of waves on a string with mass per unit length and tension T : v = p T= Transmitted power: P av = 2 2 vA 2 2 Interference: y 1 =A 1 sin(kx !t); y 2 =A 2 sin(kx !t +) y =y 1 +y 2 =A sin(kx !t +) A = q A 1 2 +A 2 2 + 2A 1 A 2 cos tan = A 2 sin A 1 +A 2 cos = 2n; constructive; (2n + 1); destructive: Standing Waves: 2Acoskx A N A N A x =4 y 1 =A 1 sin(kx !t); y 2 =A 2 sin(kx +!t) y =y 1 +y 2 = (2A coskx) sin!t x = n + 1 2 2 ; nodes; n = 0; 1; 2;::: n 2 ; antinodes. n = 0; 1; 2;::: String xed at both ends: L N A N A N =2 1. Boundary conditions: y = 0 at x = 0 and at x =L 2. Allowed Freq.: L =n 2 ; = n 2L q T ; n = 1; 2; 3;:::. 3. Fundamental/1 st harmonics: 0 = 1 2L q T 4. 1 st overtone/2 nd harmonics: 1 = 2 2L q T 5. 2 nd overtone/3 rd harmonics: 2 = 3 2L q T 6. All harmonics are present. String xed at one end: L N A N A =2 1. Boundary conditions: y = 0 at x = 0 2. Allowed Freq.: L = (2n + 1) 4 ; = 2n+1 4L q T ; n = 0; 1; 2;:::. 3. Fundamental/1 st harmonics: 0 = 1 4L q T 4. 1 st overtone/3 rd harmonics: 1 = 3 4L q T 5. 2 nd overtone/5 th harmonics: 2 = 5 4L q T 6. Only odd harmonics are present. Sonometer: / 1 L , / p T , / 1 p . = n 2L q T 2.3: Sound Waves Displacement wave: s =s 0 sin!(t x=v) Pressure wave: p =p 0 cos!(t x=v); p 0 = (B!=v)s 0 Speed of sound waves: v liquid = s B ; v solid = s Y ; v gas = s P Intensity: I = 2 2 B v s 0 2 2 = p0 2 v 2B = p0 2 2v Standing longitudinal waves: p 1 =p 0 sin!(t x=v); p 2 =p 0 sin!(t +x=v) p =p 1 +p 2 = 2p 0 coskx sin!t Closed organ pipe: L 1. Boundary condition: y = 0 at x = 0 2. Allowed freq.: L = (2n + 1) 4 ; = (2n + 1) v 4L ; n = 0; 1; 2;::: 3. Fundamental/1 st harmonics: 0 = v 4L 4. 1 st overtone/3 rd harmonics: 1 = 3 0 = 3v 4L Page 2 Waves 2.1: Waves Motion General equation of wave: @ 2 y @x 2 = 1 v 2 @ 2 y @t 2 . Notation: Amplitude A, Frequency , Wavelength , Pe- riod T , Angular Frequency !, Wave Number k, T = 1 = 2 ! ; v =; k = 2 Progressive wave travelling with speed v: y =f(t x=v); +x; y =f(t +x=v); x Progressive sine wave: 2 x y A y =A sin(kx !t) =A sin(2 (x= t=T )) 2.2: Waves on a String Speed of waves on a string with mass per unit length and tension T : v = p T= Transmitted power: P av = 2 2 vA 2 2 Interference: y 1 =A 1 sin(kx !t); y 2 =A 2 sin(kx !t +) y =y 1 +y 2 =A sin(kx !t +) A = q A 1 2 +A 2 2 + 2A 1 A 2 cos tan = A 2 sin A 1 +A 2 cos = 2n; constructive; (2n + 1); destructive: Standing Waves: 2Acoskx A N A N A x =4 y 1 =A 1 sin(kx !t); y 2 =A 2 sin(kx +!t) y =y 1 +y 2 = (2A coskx) sin!t x = n + 1 2 2 ; nodes; n = 0; 1; 2;::: n 2 ; antinodes. n = 0; 1; 2;::: String xed at both ends: L N A N A N =2 1. Boundary conditions: y = 0 at x = 0 and at x =L 2. Allowed Freq.: L =n 2 ; = n 2L q T ; n = 1; 2; 3;:::. 3. Fundamental/1 st harmonics: 0 = 1 2L q T 4. 1 st overtone/2 nd harmonics: 1 = 2 2L q T 5. 2 nd overtone/3 rd harmonics: 2 = 3 2L q T 6. All harmonics are present. String xed at one end: L N A N A =2 1. Boundary conditions: y = 0 at x = 0 2. Allowed Freq.: L = (2n + 1) 4 ; = 2n+1 4L q T ; n = 0; 1; 2;:::. 3. Fundamental/1 st harmonics: 0 = 1 4L q T 4. 1 st overtone/3 rd harmonics: 1 = 3 4L q T 5. 2 nd overtone/5 th harmonics: 2 = 5 4L q T 6. Only odd harmonics are present. Sonometer: / 1 L , / p T , / 1 p . = n 2L q T 2.3: Sound Waves Displacement wave: s =s 0 sin!(t x=v) Pressure wave: p =p 0 cos!(t x=v); p 0 = (B!=v)s 0 Speed of sound waves: v liquid = s B ; v solid = s Y ; v gas = s P Intensity: I = 2 2 B v s 0 2 2 = p0 2 v 2B = p0 2 2v Standing longitudinal waves: p 1 =p 0 sin!(t x=v); p 2 =p 0 sin!(t +x=v) p =p 1 +p 2 = 2p 0 coskx sin!t Closed organ pipe: L 1. Boundary condition: y = 0 at x = 0 2. Allowed freq.: L = (2n + 1) 4 ; = (2n + 1) v 4L ; n = 0; 1; 2;::: 3. Fundamental/1 st harmonics: 0 = v 4L 4. 1 st overtone/3 rd harmonics: 1 = 3 0 = 3v 4L 5. 2 nd overtone/5 th harmonics: 2 = 5 0 = 5v 4L 6. Only odd harmonics are present. Open organ pipe: L A N A N A 1. Boundary condition: y = 0 at x = 0 Allowed freq.: L =n 2 ; =n v 4L ; n = 1; 2;::: 2. Fundamental/1 st harmonics: 0 = v 2L 3. 1 st overtone/2 nd harmonics: 1 = 2 0 = 2v 2L 4. 2 nd overtone/3 rd harmonics: 2 = 3 0 = 3v 2L 5. All harmonics are present. Resonance column: l1 +d l2 +d l 1 +d = 2 ; l 2 +d = 3 4 ; v = 2(l 2 l 1 ) Beats: two waves of almost equal frequencies ! 1 ! 2 p 1 =p 0 sin! 1 (t x=v); p 2 =p 0 sin! 2 (t x=v) p =p 1 +p 2 = 2p 0 cos !(t x=v) sin!(t x=v) ! = (! 1 +! 2 )=2; ! =! 1 ! 2 (beats freq.) Doppler Eect: = v +u o v u s 0 where, v is the speed of sound in the medium, u 0 is the speed of the observer w.r.t. the medium, consid- ered positive when it moves towards the source and negative when it moves away from the source, and u s is the speed of the source w.r.t. the medium, consid- ered positive when it moves towards the observer and negative when it moves away from the observer. Page 3 Waves 2.1: Waves Motion General equation of wave: @ 2 y @x 2 = 1 v 2 @ 2 y @t 2 . Notation: Amplitude A, Frequency , Wavelength , Pe- riod T , Angular Frequency !, Wave Number k, T = 1 = 2 ! ; v =; k = 2 Progressive wave travelling with speed v: y =f(t x=v); +x; y =f(t +x=v); x Progressive sine wave: 2 x y A y =A sin(kx !t) =A sin(2 (x= t=T )) 2.2: Waves on a String Speed of waves on a string with mass per unit length and tension T : v = p T= Transmitted power: P av = 2 2 vA 2 2 Interference: y 1 =A 1 sin(kx !t); y 2 =A 2 sin(kx !t +) y =y 1 +y 2 =A sin(kx !t +) A = q A 1 2 +A 2 2 + 2A 1 A 2 cos tan = A 2 sin A 1 +A 2 cos = 2n; constructive; (2n + 1); destructive: Standing Waves: 2Acoskx A N A N A x =4 y 1 =A 1 sin(kx !t); y 2 =A 2 sin(kx +!t) y =y 1 +y 2 = (2A coskx) sin!t x = n + 1 2 2 ; nodes; n = 0; 1; 2;::: n 2 ; antinodes. n = 0; 1; 2;::: String xed at both ends: L N A N A N =2 1. Boundary conditions: y = 0 at x = 0 and at x =L 2. Allowed Freq.: L =n 2 ; = n 2L q T ; n = 1; 2; 3;:::. 3. Fundamental/1 st harmonics: 0 = 1 2L q T 4. 1 st overtone/2 nd harmonics: 1 = 2 2L q T 5. 2 nd overtone/3 rd harmonics: 2 = 3 2L q T 6. All harmonics are present. String xed at one end: L N A N A =2 1. Boundary conditions: y = 0 at x = 0 2. Allowed Freq.: L = (2n + 1) 4 ; = 2n+1 4L q T ; n = 0; 1; 2;:::. 3. Fundamental/1 st harmonics: 0 = 1 4L q T 4. 1 st overtone/3 rd harmonics: 1 = 3 4L q T 5. 2 nd overtone/5 th harmonics: 2 = 5 4L q T 6. Only odd harmonics are present. Sonometer: / 1 L , / p T , / 1 p . = n 2L q T 2.3: Sound Waves Displacement wave: s =s 0 sin!(t x=v) Pressure wave: p =p 0 cos!(t x=v); p 0 = (B!=v)s 0 Speed of sound waves: v liquid = s B ; v solid = s Y ; v gas = s P Intensity: I = 2 2 B v s 0 2 2 = p0 2 v 2B = p0 2 2v Standing longitudinal waves: p 1 =p 0 sin!(t x=v); p 2 =p 0 sin!(t +x=v) p =p 1 +p 2 = 2p 0 coskx sin!t Closed organ pipe: L 1. Boundary condition: y = 0 at x = 0 2. Allowed freq.: L = (2n + 1) 4 ; = (2n + 1) v 4L ; n = 0; 1; 2;::: 3. Fundamental/1 st harmonics: 0 = v 4L 4. 1 st overtone/3 rd harmonics: 1 = 3 0 = 3v 4L 5. 2 nd overtone/5 th harmonics: 2 = 5 0 = 5v 4L 6. Only odd harmonics are present. Open organ pipe: L A N A N A 1. Boundary condition: y = 0 at x = 0 Allowed freq.: L =n 2 ; =n v 4L ; n = 1; 2;::: 2. Fundamental/1 st harmonics: 0 = v 2L 3. 1 st overtone/2 nd harmonics: 1 = 2 0 = 2v 2L 4. 2 nd overtone/3 rd harmonics: 2 = 3 0 = 3v 2L 5. All harmonics are present. Resonance column: l1 +d l2 +d l 1 +d = 2 ; l 2 +d = 3 4 ; v = 2(l 2 l 1 ) Beats: two waves of almost equal frequencies ! 1 ! 2 p 1 =p 0 sin! 1 (t x=v); p 2 =p 0 sin! 2 (t x=v) p =p 1 +p 2 = 2p 0 cos !(t x=v) sin!(t x=v) ! = (! 1 +! 2 )=2; ! =! 1 ! 2 (beats freq.) Doppler Eect: = v +u o v u s 0 where, v is the speed of sound in the medium, u 0 is the speed of the observer w.r.t. the medium, consid- ered positive when it moves towards the source and negative when it moves away from the source, and u s is the speed of the source w.r.t. the medium, consid- ered positive when it moves towards the observer and negative when it moves away from the observer. Page 4 Waves 2.1: Waves Motion General equation of wave: @ 2 y @x 2 = 1 v 2 @ 2 y @t 2 . Notation: Amplitude A, Frequency , Wavelength , Pe- riod T , Angular Frequency !, Wave Number k, T = 1 = 2 ! ; v =; k = 2 Progressive wave travelling with speed v: y =f(t x=v); +x; y =f(t +x=v); x Progressive sine wave: 2 x y A y =A sin(kx !t) =A sin(2 (x= t=T )) 2.2: Waves on a String Speed of waves on a string with mass per unit length and tension T : v = p T= Transmitted power: P av = 2 2 vA 2 2 Interference: y 1 =A 1 sin(kx !t); y 2 =A 2 sin(kx !t +) y =y 1 +y 2 =A sin(kx !t +) A = q A 1 2 +A 2 2 + 2A 1 A 2 cos tan = A 2 sin A 1 +A 2 cos = 2n; constructive; (2n + 1); destructive: Standing Waves: 2Acoskx A N A N A x =4 y 1 =A 1 sin(kx !t); y 2 =A 2 sin(kx +!t) y =y 1 +y 2 = (2A coskx) sin!t x = n + 1 2 2 ; nodes; n = 0; 1; 2;::: n 2 ; antinodes. n = 0; 1; 2;::: String xed at both ends: L N A N A N =2 1. Boundary conditions: y = 0 at x = 0 and at x =L 2. Allowed Freq.: L =n 2 ; = n 2L q T ; n = 1; 2; 3;:::. 3. Fundamental/1 st harmonics: 0 = 1 2L q T 4. 1 st overtone/2 nd harmonics: 1 = 2 2L q T 5. 2 nd overtone/3 rd harmonics: 2 = 3 2L q T 6. All harmonics are present. String xed at one end: L N A N A =2 1. Boundary conditions: y = 0 at x = 0 2. Allowed Freq.: L = (2n + 1) 4 ; = 2n+1 4L q T ; n = 0; 1; 2;:::. 3. Fundamental/1 st harmonics: 0 = 1 4L q T 4. 1 st overtone/3 rd harmonics: 1 = 3 4L q T 5. 2 nd overtone/5 th harmonics: 2 = 5 4L q T 6. Only odd harmonics are present. Sonometer: / 1 L , / p T , / 1 p . = n 2L q T 2.3: Sound Waves Displacement wave: s =s 0 sin!(t x=v) Pressure wave: p =p 0 cos!(t x=v); p 0 = (B!=v)s 0 Speed of sound waves: v liquid = s B ; v solid = s Y ; v gas = s P Intensity: I = 2 2 B v s 0 2 2 = p0 2 v 2B = p0 2 2v Standing longitudinal waves: p 1 =p 0 sin!(t x=v); p 2 =p 0 sin!(t +x=v) p =p 1 +p 2 = 2p 0 coskx sin!t Closed organ pipe: L 1. Boundary condition: y = 0 at x = 0 2. Allowed freq.: L = (2n + 1) 4 ; = (2n + 1) v 4L ; n = 0; 1; 2;::: 3. Fundamental/1 st harmonics: 0 = v 4L 4. 1 st overtone/3 rd harmonics: 1 = 3 0 = 3v 4L 5. 2 nd overtone/5 th harmonics: 2 = 5 0 = 5v 4L 6. Only odd harmonics are present. Open organ pipe: L A N A N A 1. Boundary condition: y = 0 at x = 0 Allowed freq.: L =n 2 ; =n v 4L ; n = 1; 2;::: 2. Fundamental/1 st harmonics: 0 = v 2L 3. 1 st overtone/2 nd harmonics: 1 = 2 0 = 2v 2L 4. 2 nd overtone/3 rd harmonics: 2 = 3 0 = 3v 2L 5. All harmonics are present. Resonance column: l1 +d l2 +d l 1 +d = 2 ; l 2 +d = 3 4 ; v = 2(l 2 l 1 ) Beats: two waves of almost equal frequencies ! 1 ! 2 p 1 =p 0 sin! 1 (t x=v); p 2 =p 0 sin! 2 (t x=v) p =p 1 +p 2 = 2p 0 cos !(t x=v) sin!(t x=v) ! = (! 1 +! 2 )=2; ! =! 1 ! 2 (beats freq.) Doppler Eect: = v +u o v u s 0 where, v is the speed of sound in the medium, u 0 is the speed of the observer w.r.t. the medium, consid- ered positive when it moves towards the source and negative when it moves away from the source, and u s is the speed of the source w.r.t. the medium, consid- ered positive when it moves towards the observer and negative when it moves away from the observer.Read More
289 videos|635 docs|179 tests
|
|
Explore Courses for JEE exam
|