Page 1
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
[Exam Date : 9-03-2018, Shift-I
1. How many two digit prime numbers are there
between 10 to 100 which remains prime
numbers when the order of their digits is
reversed ?
10 mes 100 kesâ yeerÛe oes DebkeâeW keâer Ssmeer efkeâleveer DeYeepÙe
mebKÙee nw efpevekesâ DebkeâeW kesâ ›eâce keâes heuešves hej Yeer Jes
Skeâ DeYeepÙe mebKÙee ner jnsieer?
(a) 8 (b) 9
(c) 10 (d) 12
2. How many perfect cubes are there between 1
and 100000 which are divisible by 7.
1 mes 100000 kesâ yeerÛe efkeâleves hetCe& Ieve nQ pees 7 mes
efJeYeeefpele nw?
(a) 5 (b) 6
(c) 7 (d) 15
3. If A = 0.142857142857 ...... and B = 0.16666....,
then what is the value of (A+B)/AB ?
Ùeefo A = 0.142857142857 ...... leLee B =
0.16666.......... nw, lees (A+B)/AB keâe ceeve keäÙee nw?
(a) 10 (b) 11
(c) 12 (d) 13
4. If A = 0.abcabc....., then by what number A
should be multiplied so as to get an integeral
value ?
Ùeefo A = 0.abcabc..... nw, lees A keâes efkeâme mebKÙee mes
iegCee efkeâÙee peeS leeefkeâ Skeâ hetCeeËkeâ ceeve Øeehle nes?
(a) 2997
(b) 1000
(c) 1998
(d) Both 2997 and 1998/2997 leLee 1998 oesveeW
5. What is the sum of
1 1 1 1
1 + 4 + 7 +10 .......
2 6 12 20
upto 20 terms ?
1 1 1 1
1 + 4 + 7 +10 .......
2 6 12 20
kesâ 20 heoeW lekeâ keâe
Ùeesie keäÙee nw?
(a) 12410/21 (b) 12412/21
(c) 12433/21 (d) 1179/2
6. If (1/2
1
) + (1/2
2
) + (1/2
3
) .... (1/2
10
) = 1/k, then
what is the value of k ?
Ùeefo (1/2
1
) + (1/2
2
) + (1/2
3
) .... (1/2
10
) = 1/k nw, lees
k keâe ceeve keäÙee nw?
(a) 512/511 (b) 1024/1023
(c) 511/512 (d) 1023/1024
7. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
2 3 4
1 + 2 + 3 > 8
3 4 5
II.
1 3 1
6 - 5 + 4 > 5
2 4 4
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
8. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. Highest common factor of (3
2002
–1) and
(3
2002
+ 1) is 4/(3
2002
–1) leLee (3
2002
+ 1) keâe cenòece
meceeheJeòe&keâ 4 nw~
II. (4
84
–1) is exactly divisible by 5/(4
84
–1), 5 mes
hetCe&le: efJeYeeefpele nw~
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
9. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 1
99
+ 2
99
+ 3
99
+ 4
99
+ 5
99
is exactly divisible by
5./ 1
99
+ 2
99
+ 3
99
+ 4
99
+ 5
99
mes hetCe&le: efJeYeeefpele nw~
II. 31
11
> 17
14
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
10. N = 2
48
– 1 and N are exactly divisible by two
numbers between 60 and 70. What is the sum
of those two numbers ?
N = 2
48
– 1 leLee N, 60 leLee 70 kesâ yeerÛe oes mebKÙee mes
hetCe&le: efJeYeeefpele nw~ Gve oes mebKÙeeDeeW keâe Ùeesie keäÙee nw?
(a) 128 (b) 256
(c) 64 (d) 512
11. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
Page 2
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
[Exam Date : 9-03-2018, Shift-I
1. How many two digit prime numbers are there
between 10 to 100 which remains prime
numbers when the order of their digits is
reversed ?
10 mes 100 kesâ yeerÛe oes DebkeâeW keâer Ssmeer efkeâleveer DeYeepÙe
mebKÙee nw efpevekesâ DebkeâeW kesâ ›eâce keâes heuešves hej Yeer Jes
Skeâ DeYeepÙe mebKÙee ner jnsieer?
(a) 8 (b) 9
(c) 10 (d) 12
2. How many perfect cubes are there between 1
and 100000 which are divisible by 7.
1 mes 100000 kesâ yeerÛe efkeâleves hetCe& Ieve nQ pees 7 mes
efJeYeeefpele nw?
(a) 5 (b) 6
(c) 7 (d) 15
3. If A = 0.142857142857 ...... and B = 0.16666....,
then what is the value of (A+B)/AB ?
Ùeefo A = 0.142857142857 ...... leLee B =
0.16666.......... nw, lees (A+B)/AB keâe ceeve keäÙee nw?
(a) 10 (b) 11
(c) 12 (d) 13
4. If A = 0.abcabc....., then by what number A
should be multiplied so as to get an integeral
value ?
Ùeefo A = 0.abcabc..... nw, lees A keâes efkeâme mebKÙee mes
iegCee efkeâÙee peeS leeefkeâ Skeâ hetCeeËkeâ ceeve Øeehle nes?
(a) 2997
(b) 1000
(c) 1998
(d) Both 2997 and 1998/2997 leLee 1998 oesveeW
5. What is the sum of
1 1 1 1
1 + 4 + 7 +10 .......
2 6 12 20
upto 20 terms ?
1 1 1 1
1 + 4 + 7 +10 .......
2 6 12 20
kesâ 20 heoeW lekeâ keâe
Ùeesie keäÙee nw?
(a) 12410/21 (b) 12412/21
(c) 12433/21 (d) 1179/2
6. If (1/2
1
) + (1/2
2
) + (1/2
3
) .... (1/2
10
) = 1/k, then
what is the value of k ?
Ùeefo (1/2
1
) + (1/2
2
) + (1/2
3
) .... (1/2
10
) = 1/k nw, lees
k keâe ceeve keäÙee nw?
(a) 512/511 (b) 1024/1023
(c) 511/512 (d) 1023/1024
7. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
2 3 4
1 + 2 + 3 > 8
3 4 5
II.
1 3 1
6 - 5 + 4 > 5
2 4 4
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
8. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. Highest common factor of (3
2002
–1) and
(3
2002
+ 1) is 4/(3
2002
–1) leLee (3
2002
+ 1) keâe cenòece
meceeheJeòe&keâ 4 nw~
II. (4
84
–1) is exactly divisible by 5/(4
84
–1), 5 mes
hetCe&le: efJeYeeefpele nw~
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
9. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 1
99
+ 2
99
+ 3
99
+ 4
99
+ 5
99
is exactly divisible by
5./ 1
99
+ 2
99
+ 3
99
+ 4
99
+ 5
99
mes hetCe&le: efJeYeeefpele nw~
II. 31
11
> 17
14
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
10. N = 2
48
– 1 and N are exactly divisible by two
numbers between 60 and 70. What is the sum
of those two numbers ?
N = 2
48
– 1 leLee N, 60 leLee 70 kesâ yeerÛe oes mebKÙee mes
hetCe&le: efJeYeeefpele nw~ Gve oes mebKÙeeDeeW keâe Ùeesie keäÙee nw?
(a) 128 (b) 256
(c) 64 (d) 512
11. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
4
625 + 1296 + 1024 > 90
II.
( ) ( )
3 4
729 + 256 = 5
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
12. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 1 + 2 + 3 + 4 + 5 + 6 > 10
II. ( ) ( ) ( ) ( ) 10 + 12 + 14 > 3 12
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
13. If y
2
= y + 7, then what is the value of y
3
?
Ùeefo y
2
= y + 7 nw, lees y
3
keâe ceeve keäÙee nw?
(a) 8y + 7 (b) y + 14
(c) y + 2 (d) 4y + 7
14. If f(x) = (x–2)/(x
2
+ Px + 4) and (x–3) is a factor
of f(x), then what is the value of P ?
Ùeefo f(x) = (x–2) (x
2
+ Px + 4) leLee (x–3) f(x) keâe
iegCeveKeC[ nw, lees P keâe ceeve keäÙee nw?
(a) 4 (b) –4
(c) –13/3 (d) 13/3
15. If [x–(1/x)] = 2, then what is the value of [x
6
–
(1/x
6
)] ?
Ùeefo [x–(1/x)] = 2 nw, lees [x
6
– (1/x
6
)] keâe ceeve keäÙee
nw?
(a) 114 3 1 + (b) 134 2
(c) 142 2 3 + (d) 140 2
16. x, y and z all are positive number. If 3
x
> 9
y
and
2
y
> 4
z
, then which of the following is TRUE ?
x, y leLee z meYeer Oeveelcekeâ mebKÙee nw~ Ùeefo 3
x
> 9
y
leLee 2
y
> 4
z
nw, lees efvecveefueefKele ceW mes keâewve melÙe nw?
(a) x > y > z (b) x > z > y
(c) z > y > x (d) y > x > z
17. If x = (1/8), which of the following has the
largest values ?
Ùeefo x = (1/8) nw, lees efvecveefueefKele ceW mes efkeâmekeâe ceeve
meyemes yeÌ[e nw?
(a) x/2 (b) x
2
(c) x (d) 1/x
18. If
1
X =
1
1 +
1 + X
and
2
y =
1
2 +
1 + Y
then which
of the following can be the value of X + Y ?
Ùeefo
1
X =
1
1 +
1 + X
leLee
2
y =
1
2 +
1 + Y
nw, lees
efvecveefueefKele ceW mes keâewve mee X + Y keâe ceeve nes mekeâlee
nw?
(a)
( )
5 17 3 / 4 - - + (b)
( )
2 5 17 3 / 4 + -
(c)
( )
5 17 1 / 4 - + + (d)
( )
5 17 1 / 4 + -
19. If P = 2
29
× 3
21
× 5
8
, Q = 2
27
× 3
21
× 5
8
, R = 2
26
×
3
22
× 5
8
and S = 2
25
× 3
22
× 5
9
, then which of the
following is TRUE ?
Ùeefo P = 2
29
× 3
21
× 5
8
, Q = 2
27
× 3
21
× 5
8
, R = 2
26
× 3
22
× 5
8
leLee S = 2
25
× 3
22
× 5
9
nw, lees efvecveefueefKele
ceW mes keâewve melÙe nw?
(a) P > S > R > Q (b) S > P > R > Q
(c) P > R > S > Q (d) S > P > Q > R
20. If A = 125 and B = 8, then what is the value of
(A+B)
3
– (A–B)
3
– 6B (A
2
– B
2
) ?
Ùeefo A = 125 leLee B = 8, nw, lees (A+B)
3
– (A–B)
3
–
6B (A
2
– B
2
) keâe ceeve keäÙee nw?
(a) 4096 (b) 4608
(c) 4224 (d) 3456
21. If
z x
y z
x = 1, y = 125 and
x
y
z = 243 (x, y and z
are natural numbers), then what is the value of
9x + 10y – 18z ?
Ùeefo
z x
y z
x = 1, y = 125leLee
x
y
z = 243nw (x, y leLee
z Øeeke=âeflekeâ mebKÙeeSB nQ), lees 9x + 10y – 18z keâe ceeve
keäÙee nw?
(a) 18 (b) 15
(c) 12 (d) 5
22. If 3x + 6y + 9z
20
=
3
, 6x + 9y + 3z
17
=
3
and 18x
+ 27y – z
113
=
9
, then what is the value of 75x +
113y ?
Ùeefo 3x + 6y + 9z
20
=
3
, 6x + 9y + 3z
17
=
3
leLee
18x + 27y – z
113
=
9
nw, lees 75x + 113y keâe ceeve
keäÙee nw?
(a) 163/3 (b) 143/6
(c) 218/9 (d) 311/3
23. If sides of a triangle are 12 cm, 15 cm and 21
cm, then what is the inradius (in cm) of the
triangle ?
Ùeefo Skeâ ef$eYegpe keâer YegpeeSB 12 mes.ceer., 15 mes.ceer. leLee
21 mes.ceer. nw, lees ef$eYegpe keâer Deble: ef$epÙee (mes.ceer. ceW)
keäÙee nw?
(a)
( )
5 3 / 2 (b) 4 3
(c)
( )
3 6 / 2 (d) 3 3
24. In a triangle ABC, AB = 12, BC = 18 and AC =
15. The medians AX and BY intersect sides BC
and AC at X and Y respectively. If AX and BY
intersect each other at O, then what is the value
of OX ?
Page 3
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
[Exam Date : 9-03-2018, Shift-I
1. How many two digit prime numbers are there
between 10 to 100 which remains prime
numbers when the order of their digits is
reversed ?
10 mes 100 kesâ yeerÛe oes DebkeâeW keâer Ssmeer efkeâleveer DeYeepÙe
mebKÙee nw efpevekesâ DebkeâeW kesâ ›eâce keâes heuešves hej Yeer Jes
Skeâ DeYeepÙe mebKÙee ner jnsieer?
(a) 8 (b) 9
(c) 10 (d) 12
2. How many perfect cubes are there between 1
and 100000 which are divisible by 7.
1 mes 100000 kesâ yeerÛe efkeâleves hetCe& Ieve nQ pees 7 mes
efJeYeeefpele nw?
(a) 5 (b) 6
(c) 7 (d) 15
3. If A = 0.142857142857 ...... and B = 0.16666....,
then what is the value of (A+B)/AB ?
Ùeefo A = 0.142857142857 ...... leLee B =
0.16666.......... nw, lees (A+B)/AB keâe ceeve keäÙee nw?
(a) 10 (b) 11
(c) 12 (d) 13
4. If A = 0.abcabc....., then by what number A
should be multiplied so as to get an integeral
value ?
Ùeefo A = 0.abcabc..... nw, lees A keâes efkeâme mebKÙee mes
iegCee efkeâÙee peeS leeefkeâ Skeâ hetCeeËkeâ ceeve Øeehle nes?
(a) 2997
(b) 1000
(c) 1998
(d) Both 2997 and 1998/2997 leLee 1998 oesveeW
5. What is the sum of
1 1 1 1
1 + 4 + 7 +10 .......
2 6 12 20
upto 20 terms ?
1 1 1 1
1 + 4 + 7 +10 .......
2 6 12 20
kesâ 20 heoeW lekeâ keâe
Ùeesie keäÙee nw?
(a) 12410/21 (b) 12412/21
(c) 12433/21 (d) 1179/2
6. If (1/2
1
) + (1/2
2
) + (1/2
3
) .... (1/2
10
) = 1/k, then
what is the value of k ?
Ùeefo (1/2
1
) + (1/2
2
) + (1/2
3
) .... (1/2
10
) = 1/k nw, lees
k keâe ceeve keäÙee nw?
(a) 512/511 (b) 1024/1023
(c) 511/512 (d) 1023/1024
7. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
2 3 4
1 + 2 + 3 > 8
3 4 5
II.
1 3 1
6 - 5 + 4 > 5
2 4 4
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
8. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. Highest common factor of (3
2002
–1) and
(3
2002
+ 1) is 4/(3
2002
–1) leLee (3
2002
+ 1) keâe cenòece
meceeheJeòe&keâ 4 nw~
II. (4
84
–1) is exactly divisible by 5/(4
84
–1), 5 mes
hetCe&le: efJeYeeefpele nw~
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
9. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 1
99
+ 2
99
+ 3
99
+ 4
99
+ 5
99
is exactly divisible by
5./ 1
99
+ 2
99
+ 3
99
+ 4
99
+ 5
99
mes hetCe&le: efJeYeeefpele nw~
II. 31
11
> 17
14
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
10. N = 2
48
– 1 and N are exactly divisible by two
numbers between 60 and 70. What is the sum
of those two numbers ?
N = 2
48
– 1 leLee N, 60 leLee 70 kesâ yeerÛe oes mebKÙee mes
hetCe&le: efJeYeeefpele nw~ Gve oes mebKÙeeDeeW keâe Ùeesie keäÙee nw?
(a) 128 (b) 256
(c) 64 (d) 512
11. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
4
625 + 1296 + 1024 > 90
II.
( ) ( )
3 4
729 + 256 = 5
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
12. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 1 + 2 + 3 + 4 + 5 + 6 > 10
II. ( ) ( ) ( ) ( ) 10 + 12 + 14 > 3 12
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
13. If y
2
= y + 7, then what is the value of y
3
?
Ùeefo y
2
= y + 7 nw, lees y
3
keâe ceeve keäÙee nw?
(a) 8y + 7 (b) y + 14
(c) y + 2 (d) 4y + 7
14. If f(x) = (x–2)/(x
2
+ Px + 4) and (x–3) is a factor
of f(x), then what is the value of P ?
Ùeefo f(x) = (x–2) (x
2
+ Px + 4) leLee (x–3) f(x) keâe
iegCeveKeC[ nw, lees P keâe ceeve keäÙee nw?
(a) 4 (b) –4
(c) –13/3 (d) 13/3
15. If [x–(1/x)] = 2, then what is the value of [x
6
–
(1/x
6
)] ?
Ùeefo [x–(1/x)] = 2 nw, lees [x
6
– (1/x
6
)] keâe ceeve keäÙee
nw?
(a) 114 3 1 + (b) 134 2
(c) 142 2 3 + (d) 140 2
16. x, y and z all are positive number. If 3
x
> 9
y
and
2
y
> 4
z
, then which of the following is TRUE ?
x, y leLee z meYeer Oeveelcekeâ mebKÙee nw~ Ùeefo 3
x
> 9
y
leLee 2
y
> 4
z
nw, lees efvecveefueefKele ceW mes keâewve melÙe nw?
(a) x > y > z (b) x > z > y
(c) z > y > x (d) y > x > z
17. If x = (1/8), which of the following has the
largest values ?
Ùeefo x = (1/8) nw, lees efvecveefueefKele ceW mes efkeâmekeâe ceeve
meyemes yeÌ[e nw?
(a) x/2 (b) x
2
(c) x (d) 1/x
18. If
1
X =
1
1 +
1 + X
and
2
y =
1
2 +
1 + Y
then which
of the following can be the value of X + Y ?
Ùeefo
1
X =
1
1 +
1 + X
leLee
2
y =
1
2 +
1 + Y
nw, lees
efvecveefueefKele ceW mes keâewve mee X + Y keâe ceeve nes mekeâlee
nw?
(a)
( )
5 17 3 / 4 - - + (b)
( )
2 5 17 3 / 4 + -
(c)
( )
5 17 1 / 4 - + + (d)
( )
5 17 1 / 4 + -
19. If P = 2
29
× 3
21
× 5
8
, Q = 2
27
× 3
21
× 5
8
, R = 2
26
×
3
22
× 5
8
and S = 2
25
× 3
22
× 5
9
, then which of the
following is TRUE ?
Ùeefo P = 2
29
× 3
21
× 5
8
, Q = 2
27
× 3
21
× 5
8
, R = 2
26
× 3
22
× 5
8
leLee S = 2
25
× 3
22
× 5
9
nw, lees efvecveefueefKele
ceW mes keâewve melÙe nw?
(a) P > S > R > Q (b) S > P > R > Q
(c) P > R > S > Q (d) S > P > Q > R
20. If A = 125 and B = 8, then what is the value of
(A+B)
3
– (A–B)
3
– 6B (A
2
– B
2
) ?
Ùeefo A = 125 leLee B = 8, nw, lees (A+B)
3
– (A–B)
3
–
6B (A
2
– B
2
) keâe ceeve keäÙee nw?
(a) 4096 (b) 4608
(c) 4224 (d) 3456
21. If
z x
y z
x = 1, y = 125 and
x
y
z = 243 (x, y and z
are natural numbers), then what is the value of
9x + 10y – 18z ?
Ùeefo
z x
y z
x = 1, y = 125leLee
x
y
z = 243nw (x, y leLee
z Øeeke=âeflekeâ mebKÙeeSB nQ), lees 9x + 10y – 18z keâe ceeve
keäÙee nw?
(a) 18 (b) 15
(c) 12 (d) 5
22. If 3x + 6y + 9z
20
=
3
, 6x + 9y + 3z
17
=
3
and 18x
+ 27y – z
113
=
9
, then what is the value of 75x +
113y ?
Ùeefo 3x + 6y + 9z
20
=
3
, 6x + 9y + 3z
17
=
3
leLee
18x + 27y – z
113
=
9
nw, lees 75x + 113y keâe ceeve
keäÙee nw?
(a) 163/3 (b) 143/6
(c) 218/9 (d) 311/3
23. If sides of a triangle are 12 cm, 15 cm and 21
cm, then what is the inradius (in cm) of the
triangle ?
Ùeefo Skeâ ef$eYegpe keâer YegpeeSB 12 mes.ceer., 15 mes.ceer. leLee
21 mes.ceer. nw, lees ef$eYegpe keâer Deble: ef$epÙee (mes.ceer. ceW)
keäÙee nw?
(a)
( )
5 3 / 2 (b) 4 3
(c)
( )
3 6 / 2 (d) 3 3
24. In a triangle ABC, AB = 12, BC = 18 and AC =
15. The medians AX and BY intersect sides BC
and AC at X and Y respectively. If AX and BY
intersect each other at O, then what is the value
of OX ?
Skeâ ef$eYegpe ABC ceW, AB = 12, BC = 18 leLee AC =
15 nw~ ceeOÙe jsKee AX leLee BY Yegpee BC leLee AC keâes
›eâceMe: X leLee Y hej ØeefleÛÚso keâjleer nw~ Ùeefo AX leLee
BY, O hej ØeefleÛÚsove keâjles nQ, lees OX keâe ceeve keäÙee
nw?
(a) 4 23 (b) 23
(c) 2 23 (d)
( ) ( )
23 / 2
25. In a triangle PQR, PX bisects QR, PX is the
angle bisector of angle P. If PQ = 12 cm and
QX = 3 cm, then what is the area (in cm
2
) of
triangle PQR ?
Skeâ ef$eYegpe PQR ceW, PX, QR keâe efÉYeepekeâ nw~ PX,
keâesCe P keâe efÉYeepekeâ nw~ Ùeefo PQ = 12 mes.ceer. leLee
QX = 3 mes.ceer. nw, lees ef$eYegpe PQR keâe #es$eHeâue
(mes.ceer.
2
ceW) keäÙee nw?
(a) 12 3 (b) 8 15
(c) 18 2 (d) 9 15
26. In the given figure PT : TS : SR = 2 : 1 : 1 and
SU is parallel to TQ. If RU = 10 cm, RS = 8 cm
and SU = 6 cm, then what is the value (in cm)
of PQ ?
oer ieF& Deeke=âefle ceW, PT : TS : SR = 2 : 1 : 1 leLee
SU, TQ kesâ meceeveevlej nw~ Ùeefo RU = 10 mes.ceer., RS =
8 mes.ceer. leLee SU = 6 mes.ceer. nw, lees PQ keâe ceeve
(mes.ceer. ceW) keäÙee nw?
(a) 12 (b) 10
(c) 20 (d) 30
27. PQ and RS are two chords of a circle. PQ = 20
cm, RS = 48 cm and PQ is parallel to RS. If the
distance between PQ and RS is 34 cm, then
what is the area (in cm
2
) of the circle ?
PQ leLee RS Skeâ Je=òe keâer oes peerJeeSB nw~ PQ = 20
mes.ceer., RS = 48 mes.ceer. leLee PQ, RS kesâ meceeveevlej nw~
Ùeefo PQ leLee RS kesâ ceOÙe otjer 34 mes.ceer. nw, lees Je=òe
keâe #es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a) 729p (b) 900p
(c) 676p (d) 784p
28. Centre of two concentric circles is O. The area
of two circles is 616 cm
2
and 154 cm
2
respectively. A tangent is drawn through point
A on the larger circle to the smaller circle. This
tangent touches smaller circle at B and
intersects larger circle at C. What is the length
(in cm) of AC ?
oes mebkeWâefvõle Je=òe keâe kesâvõ O nw~ oesveeW Je=òeeW keâe
#es$eHeâue 616 mes.ceer.
2
leLee 154 mes.ceer.
2
nw~ yeÌ[s Je=òe kesâ
efyevog A mes Úesšs Je=òe hej Skeâ mheMe& jsKee KeeRÛeer ieF& nw~
Ùen mheMe& jsKee Úesšs Je=òe keâes efyevog B hej mheMe& keâjleer nw
leLee yeÌ[s Je=òe keâes efyevog C hej ØeefleÛÚso keâjleer nw~ AC
keâer uecyeeF& (mes.ceer. ceW) keäÙee nw?
(a) 12 3 (b) 14 3
(c) 10 6 (d) 18 2
29. PA and PB are two tangents drawn to two
circles of radius 3 cm and 5 cm respectively. PA
touches the smaller and larger circles at points
X and Y respectively. PB touches the smaller
and larger circle at point U and V respectively.
The centres of the smaller and larger circles O
and N respectively. If ON = 12 cm, then what is
the value (in cm) of PY ?
PA leLee PB ›eâceMe: 3 mes.ceer. leLee 5 mes.ceer. Jeeues oes
Je=òeeW hej mheMe& jsKeeSB yeveeF& ieF& nw~ PA Úesšs leLee yeÌ[s
Je=òeeW keâes ›eâceMe: X leLee Y efyevog hej mheMe& keâjleer nw~
PB Úesšs leLee yeÌ[s Je=òe keâes ›eâceMe: U leLee V efyevog hej
mheMe& keâjleer nw~ O leLee N ›eâceMe: Úesšs leLee yeÌ[s Je=òe kesâ
kesâvõ nQ~ Ùeefo ON = 12 mes.ceer. nw, lees PY keâe ceeve
(mes.ceer. ceW) keäÙee nw?
(a) 5 35 (b) 7 15
(c) 9 15 (d) 12 5
30. XR is a tangent to the circle. O is the centre of
the circle. If ?XRP = 120
0
, then what is the
value (in degrees) of ?QOR ?
XR Je=òe hej Skeâ mheMe& jsKee nw~ O Je=òe keâe kesâvõ nw~
Ùeefo ?XRP = 120
0
nw, lees ?QOR keâe ceeve (ef[«eer
ceW) keäÙee nw?
(a) 80 (b) 70
(c) 60 (d) 40
31. O is the centre of the circle. A tangent is drawn
which touches the circle at C. If ?AOC = 80
0
,
then what is the value (in degrees) of ?BCX ?
O Je=òe keâe kesâvõ nw~ Skeâ mheMe& jsKee yeveeF& ieF& nw pees
Je=òe keâes C hej mheMe& keâjleer nw~ Ùeefo ?AOC = 80
0
nw,
lees ?BCX keâe ceeve (ef[«eer ceW) keäÙee nesiee?
Page 4
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
[Exam Date : 9-03-2018, Shift-I
1. How many two digit prime numbers are there
between 10 to 100 which remains prime
numbers when the order of their digits is
reversed ?
10 mes 100 kesâ yeerÛe oes DebkeâeW keâer Ssmeer efkeâleveer DeYeepÙe
mebKÙee nw efpevekesâ DebkeâeW kesâ ›eâce keâes heuešves hej Yeer Jes
Skeâ DeYeepÙe mebKÙee ner jnsieer?
(a) 8 (b) 9
(c) 10 (d) 12
2. How many perfect cubes are there between 1
and 100000 which are divisible by 7.
1 mes 100000 kesâ yeerÛe efkeâleves hetCe& Ieve nQ pees 7 mes
efJeYeeefpele nw?
(a) 5 (b) 6
(c) 7 (d) 15
3. If A = 0.142857142857 ...... and B = 0.16666....,
then what is the value of (A+B)/AB ?
Ùeefo A = 0.142857142857 ...... leLee B =
0.16666.......... nw, lees (A+B)/AB keâe ceeve keäÙee nw?
(a) 10 (b) 11
(c) 12 (d) 13
4. If A = 0.abcabc....., then by what number A
should be multiplied so as to get an integeral
value ?
Ùeefo A = 0.abcabc..... nw, lees A keâes efkeâme mebKÙee mes
iegCee efkeâÙee peeS leeefkeâ Skeâ hetCeeËkeâ ceeve Øeehle nes?
(a) 2997
(b) 1000
(c) 1998
(d) Both 2997 and 1998/2997 leLee 1998 oesveeW
5. What is the sum of
1 1 1 1
1 + 4 + 7 +10 .......
2 6 12 20
upto 20 terms ?
1 1 1 1
1 + 4 + 7 +10 .......
2 6 12 20
kesâ 20 heoeW lekeâ keâe
Ùeesie keäÙee nw?
(a) 12410/21 (b) 12412/21
(c) 12433/21 (d) 1179/2
6. If (1/2
1
) + (1/2
2
) + (1/2
3
) .... (1/2
10
) = 1/k, then
what is the value of k ?
Ùeefo (1/2
1
) + (1/2
2
) + (1/2
3
) .... (1/2
10
) = 1/k nw, lees
k keâe ceeve keäÙee nw?
(a) 512/511 (b) 1024/1023
(c) 511/512 (d) 1023/1024
7. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
2 3 4
1 + 2 + 3 > 8
3 4 5
II.
1 3 1
6 - 5 + 4 > 5
2 4 4
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
8. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. Highest common factor of (3
2002
–1) and
(3
2002
+ 1) is 4/(3
2002
–1) leLee (3
2002
+ 1) keâe cenòece
meceeheJeòe&keâ 4 nw~
II. (4
84
–1) is exactly divisible by 5/(4
84
–1), 5 mes
hetCe&le: efJeYeeefpele nw~
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
9. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 1
99
+ 2
99
+ 3
99
+ 4
99
+ 5
99
is exactly divisible by
5./ 1
99
+ 2
99
+ 3
99
+ 4
99
+ 5
99
mes hetCe&le: efJeYeeefpele nw~
II. 31
11
> 17
14
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
10. N = 2
48
– 1 and N are exactly divisible by two
numbers between 60 and 70. What is the sum
of those two numbers ?
N = 2
48
– 1 leLee N, 60 leLee 70 kesâ yeerÛe oes mebKÙee mes
hetCe&le: efJeYeeefpele nw~ Gve oes mebKÙeeDeeW keâe Ùeesie keäÙee nw?
(a) 128 (b) 256
(c) 64 (d) 512
11. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
4
625 + 1296 + 1024 > 90
II.
( ) ( )
3 4
729 + 256 = 5
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
12. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 1 + 2 + 3 + 4 + 5 + 6 > 10
II. ( ) ( ) ( ) ( ) 10 + 12 + 14 > 3 12
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
13. If y
2
= y + 7, then what is the value of y
3
?
Ùeefo y
2
= y + 7 nw, lees y
3
keâe ceeve keäÙee nw?
(a) 8y + 7 (b) y + 14
(c) y + 2 (d) 4y + 7
14. If f(x) = (x–2)/(x
2
+ Px + 4) and (x–3) is a factor
of f(x), then what is the value of P ?
Ùeefo f(x) = (x–2) (x
2
+ Px + 4) leLee (x–3) f(x) keâe
iegCeveKeC[ nw, lees P keâe ceeve keäÙee nw?
(a) 4 (b) –4
(c) –13/3 (d) 13/3
15. If [x–(1/x)] = 2, then what is the value of [x
6
–
(1/x
6
)] ?
Ùeefo [x–(1/x)] = 2 nw, lees [x
6
– (1/x
6
)] keâe ceeve keäÙee
nw?
(a) 114 3 1 + (b) 134 2
(c) 142 2 3 + (d) 140 2
16. x, y and z all are positive number. If 3
x
> 9
y
and
2
y
> 4
z
, then which of the following is TRUE ?
x, y leLee z meYeer Oeveelcekeâ mebKÙee nw~ Ùeefo 3
x
> 9
y
leLee 2
y
> 4
z
nw, lees efvecveefueefKele ceW mes keâewve melÙe nw?
(a) x > y > z (b) x > z > y
(c) z > y > x (d) y > x > z
17. If x = (1/8), which of the following has the
largest values ?
Ùeefo x = (1/8) nw, lees efvecveefueefKele ceW mes efkeâmekeâe ceeve
meyemes yeÌ[e nw?
(a) x/2 (b) x
2
(c) x (d) 1/x
18. If
1
X =
1
1 +
1 + X
and
2
y =
1
2 +
1 + Y
then which
of the following can be the value of X + Y ?
Ùeefo
1
X =
1
1 +
1 + X
leLee
2
y =
1
2 +
1 + Y
nw, lees
efvecveefueefKele ceW mes keâewve mee X + Y keâe ceeve nes mekeâlee
nw?
(a)
( )
5 17 3 / 4 - - + (b)
( )
2 5 17 3 / 4 + -
(c)
( )
5 17 1 / 4 - + + (d)
( )
5 17 1 / 4 + -
19. If P = 2
29
× 3
21
× 5
8
, Q = 2
27
× 3
21
× 5
8
, R = 2
26
×
3
22
× 5
8
and S = 2
25
× 3
22
× 5
9
, then which of the
following is TRUE ?
Ùeefo P = 2
29
× 3
21
× 5
8
, Q = 2
27
× 3
21
× 5
8
, R = 2
26
× 3
22
× 5
8
leLee S = 2
25
× 3
22
× 5
9
nw, lees efvecveefueefKele
ceW mes keâewve melÙe nw?
(a) P > S > R > Q (b) S > P > R > Q
(c) P > R > S > Q (d) S > P > Q > R
20. If A = 125 and B = 8, then what is the value of
(A+B)
3
– (A–B)
3
– 6B (A
2
– B
2
) ?
Ùeefo A = 125 leLee B = 8, nw, lees (A+B)
3
– (A–B)
3
–
6B (A
2
– B
2
) keâe ceeve keäÙee nw?
(a) 4096 (b) 4608
(c) 4224 (d) 3456
21. If
z x
y z
x = 1, y = 125 and
x
y
z = 243 (x, y and z
are natural numbers), then what is the value of
9x + 10y – 18z ?
Ùeefo
z x
y z
x = 1, y = 125leLee
x
y
z = 243nw (x, y leLee
z Øeeke=âeflekeâ mebKÙeeSB nQ), lees 9x + 10y – 18z keâe ceeve
keäÙee nw?
(a) 18 (b) 15
(c) 12 (d) 5
22. If 3x + 6y + 9z
20
=
3
, 6x + 9y + 3z
17
=
3
and 18x
+ 27y – z
113
=
9
, then what is the value of 75x +
113y ?
Ùeefo 3x + 6y + 9z
20
=
3
, 6x + 9y + 3z
17
=
3
leLee
18x + 27y – z
113
=
9
nw, lees 75x + 113y keâe ceeve
keäÙee nw?
(a) 163/3 (b) 143/6
(c) 218/9 (d) 311/3
23. If sides of a triangle are 12 cm, 15 cm and 21
cm, then what is the inradius (in cm) of the
triangle ?
Ùeefo Skeâ ef$eYegpe keâer YegpeeSB 12 mes.ceer., 15 mes.ceer. leLee
21 mes.ceer. nw, lees ef$eYegpe keâer Deble: ef$epÙee (mes.ceer. ceW)
keäÙee nw?
(a)
( )
5 3 / 2 (b) 4 3
(c)
( )
3 6 / 2 (d) 3 3
24. In a triangle ABC, AB = 12, BC = 18 and AC =
15. The medians AX and BY intersect sides BC
and AC at X and Y respectively. If AX and BY
intersect each other at O, then what is the value
of OX ?
Skeâ ef$eYegpe ABC ceW, AB = 12, BC = 18 leLee AC =
15 nw~ ceeOÙe jsKee AX leLee BY Yegpee BC leLee AC keâes
›eâceMe: X leLee Y hej ØeefleÛÚso keâjleer nw~ Ùeefo AX leLee
BY, O hej ØeefleÛÚsove keâjles nQ, lees OX keâe ceeve keäÙee
nw?
(a) 4 23 (b) 23
(c) 2 23 (d)
( ) ( )
23 / 2
25. In a triangle PQR, PX bisects QR, PX is the
angle bisector of angle P. If PQ = 12 cm and
QX = 3 cm, then what is the area (in cm
2
) of
triangle PQR ?
Skeâ ef$eYegpe PQR ceW, PX, QR keâe efÉYeepekeâ nw~ PX,
keâesCe P keâe efÉYeepekeâ nw~ Ùeefo PQ = 12 mes.ceer. leLee
QX = 3 mes.ceer. nw, lees ef$eYegpe PQR keâe #es$eHeâue
(mes.ceer.
2
ceW) keäÙee nw?
(a) 12 3 (b) 8 15
(c) 18 2 (d) 9 15
26. In the given figure PT : TS : SR = 2 : 1 : 1 and
SU is parallel to TQ. If RU = 10 cm, RS = 8 cm
and SU = 6 cm, then what is the value (in cm)
of PQ ?
oer ieF& Deeke=âefle ceW, PT : TS : SR = 2 : 1 : 1 leLee
SU, TQ kesâ meceeveevlej nw~ Ùeefo RU = 10 mes.ceer., RS =
8 mes.ceer. leLee SU = 6 mes.ceer. nw, lees PQ keâe ceeve
(mes.ceer. ceW) keäÙee nw?
(a) 12 (b) 10
(c) 20 (d) 30
27. PQ and RS are two chords of a circle. PQ = 20
cm, RS = 48 cm and PQ is parallel to RS. If the
distance between PQ and RS is 34 cm, then
what is the area (in cm
2
) of the circle ?
PQ leLee RS Skeâ Je=òe keâer oes peerJeeSB nw~ PQ = 20
mes.ceer., RS = 48 mes.ceer. leLee PQ, RS kesâ meceeveevlej nw~
Ùeefo PQ leLee RS kesâ ceOÙe otjer 34 mes.ceer. nw, lees Je=òe
keâe #es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a) 729p (b) 900p
(c) 676p (d) 784p
28. Centre of two concentric circles is O. The area
of two circles is 616 cm
2
and 154 cm
2
respectively. A tangent is drawn through point
A on the larger circle to the smaller circle. This
tangent touches smaller circle at B and
intersects larger circle at C. What is the length
(in cm) of AC ?
oes mebkeWâefvõle Je=òe keâe kesâvõ O nw~ oesveeW Je=òeeW keâe
#es$eHeâue 616 mes.ceer.
2
leLee 154 mes.ceer.
2
nw~ yeÌ[s Je=òe kesâ
efyevog A mes Úesšs Je=òe hej Skeâ mheMe& jsKee KeeRÛeer ieF& nw~
Ùen mheMe& jsKee Úesšs Je=òe keâes efyevog B hej mheMe& keâjleer nw
leLee yeÌ[s Je=òe keâes efyevog C hej ØeefleÛÚso keâjleer nw~ AC
keâer uecyeeF& (mes.ceer. ceW) keäÙee nw?
(a) 12 3 (b) 14 3
(c) 10 6 (d) 18 2
29. PA and PB are two tangents drawn to two
circles of radius 3 cm and 5 cm respectively. PA
touches the smaller and larger circles at points
X and Y respectively. PB touches the smaller
and larger circle at point U and V respectively.
The centres of the smaller and larger circles O
and N respectively. If ON = 12 cm, then what is
the value (in cm) of PY ?
PA leLee PB ›eâceMe: 3 mes.ceer. leLee 5 mes.ceer. Jeeues oes
Je=òeeW hej mheMe& jsKeeSB yeveeF& ieF& nw~ PA Úesšs leLee yeÌ[s
Je=òeeW keâes ›eâceMe: X leLee Y efyevog hej mheMe& keâjleer nw~
PB Úesšs leLee yeÌ[s Je=òe keâes ›eâceMe: U leLee V efyevog hej
mheMe& keâjleer nw~ O leLee N ›eâceMe: Úesšs leLee yeÌ[s Je=òe kesâ
kesâvõ nQ~ Ùeefo ON = 12 mes.ceer. nw, lees PY keâe ceeve
(mes.ceer. ceW) keäÙee nw?
(a) 5 35 (b) 7 15
(c) 9 15 (d) 12 5
30. XR is a tangent to the circle. O is the centre of
the circle. If ?XRP = 120
0
, then what is the
value (in degrees) of ?QOR ?
XR Je=òe hej Skeâ mheMe& jsKee nw~ O Je=òe keâe kesâvõ nw~
Ùeefo ?XRP = 120
0
nw, lees ?QOR keâe ceeve (ef[«eer
ceW) keäÙee nw?
(a) 80 (b) 70
(c) 60 (d) 40
31. O is the centre of the circle. A tangent is drawn
which touches the circle at C. If ?AOC = 80
0
,
then what is the value (in degrees) of ?BCX ?
O Je=òe keâe kesâvõ nw~ Skeâ mheMe& jsKee yeveeF& ieF& nw pees
Je=òe keâes C hej mheMe& keâjleer nw~ Ùeefo ?AOC = 80
0
nw,
lees ?BCX keâe ceeve (ef[«eer ceW) keäÙee nesiee?
(a) 80 (b) 30
(c) 40 (d) 50
32. The distance between the centres of two circles
is 24 cm. If the radius of the two circles are 4
cm and 8 cm, then what is the sum of the
lengths (in cm) of the direct common tangent
and the transverse common tangent ?
oes Je=òeeW kesâ kesâvõ kesâ ceOÙe keâer otjer 24 mes.ceer. nw~ Ùeefo
oes Je=òe keâer ef$epÙee 4 mes.ceer. leLee 8 mes.ceer. nw, lees
GYeÙeefve<" DevegmheMe& jsKee leLee efleÙe&keâ GYeÙeefve<"
DevegmheMe& jsKee (mes.ceer. ceW) keâe Ùeesie keäÙee nw?
(a)
( )
4 3 3 35 + (b)
( )
4 4 35 3 3 +
(c)
( )
4 35 3 3 + (d)
( )
4 3 35 3 3 +
33. ABC is triangle. AB = 10 cm and BC = 16 cm.
AD = 8 cm and is perpendicular to side BC.
What is the length (in cm) of side AC ?
ABC Skeâ ef$eYegpe nw~ AB = 10 mes.ceer. leLee BC = 16
mes.ceer. nw~ AD = 8 mes.ceer. nw leLee Ùen Yegpee BC kesâ
meceuecye nw~ Yegpee AC keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 4 41 (b) 2 41
(c) 2 82 (d) 4 82
34. An equilateral triangle of side 12 cm is drawn.
What is the area (in cm
2
) of the largest square
which can be drawn inside it ?
12 mes.ceer. Yegpee Jeeuee Skeâ meceyeeng ef$eYegpe yeveeÙee ieÙee~
FmeceW yeveeÙes pee mekeâves Jeeues meyemes yeÌ[s Jeie& keâe
#es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a) 1512 864 3 - (b) 3024 1728 3 -
(c) 3024 1728 3 + (d) 1512 864 3 +
35. PQRS is a rectangle. The ratio of the sides PQ
and QR is 3 : 1. If the length of the diagonal PR
is 10 cm, then what is the area (in cm
2
) of the
rectangle ?
PQRS Skeâ DeeÙele nw~ Yegpee PQ leLee QR keâe Devegheele
3 : 1 nw~ Ùeefo efJekeâCe& PR keâer uecyeeF& 10 mes.ceer. nw, lees
DeeÙele keâe #es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a) 15 (b) 30
(c) 45 (d) 20
36. ABCDEF is a regular hexagon. What is the
ratio of the area of triangle ACE and area of
triangle AEF ?
ABCDEF Skeâ mece<ešYegpe nw~ ef$eYegpe ACE kesâ
#es$eHeâue leLee ef$eYegpe AEF kesâ #es$eHeâue keâe Devegheele
keäÙee nw?
(a) 6 : 1 (b) 4 : 1
(c) 3 : 1 (d) 5 : 1
37. ABCD is trapezium. Sides AB and CD are
parallel to each other. AB = 6 cm, CD = 18 cm,
BC = 8 cm and AD = 12 cm. A line parallel to
AB divides the trapezium in two parts of equal
perimeter. This line cuts BC at E and AD at F.
If BE/EC = AF/FD, then what is the value of
BE/EC ?
ABCD Skeâ meceuecye nw~ YegpeeSB AB leLee CD Skeâ
otmejs kesâ meceevlej nw~ AB = 6 mes.ceer., CD = 18 mes.ceer.,
BC = 8 mes.ceer. leLee AD = 12 mes.ceer. nw~ AB kesâ
meceevlej Skeâ jsKee meceuecye keâes oes yejeyej heefjceehe Jeeues
efnmmeeW ceW keâešlee nw~ Ùen jsKee Yegpee BC keâes E hej leLee
AD keâes F hej keâešleer nw~ Ùeefo BE/EC=AF/FD nw, lees
BE/EC keâe ceeve keäÙee nw?
(a) 1/2 (b) 2
(c) 4 (d) 1/4
38. A rectangular sheet of length 42 cm and
breadth 14 cm is cut from a circular sheet.
What is the minimum area (in cm
2
) of circular
sheet ?
Skeâ Je=òeekeâej Ûeeoj mes 42 mes.ceer. uecyeer leLee 14
mes.ceer. ÛeewÌ[er Skeâ DeeÙeleekeâej Ûeeoj keâešer ieF& nw~
Je=òeekeâej Ûeeoj keâe #es$eHeâue (mes.ceer.
2
ceW) keâce mes keâce
keäÙee nw?
(a) 3080 (b) 1540
(c) 770 (d) 1030
39. An equilateral triangle ABC is inscribed in a
circle as shown in figure. A square of largest
possible area is made inside this triangle as
shown. Another circle made inscribing the
square. What is the ratio of large circle and the
small circle ?
pewmee efkeâ Deeke=âefle ceW oMee&Ùee ieÙee nw, Skeâ mece ef$eYegpe
ABC Skeâ Je=òe ceW yeveeÙee ieÙee nw~ pewmee oMee&Ùee ieÙee
nw, meyemes yeÌ[s mebYeeefJele #es$eHeâue Jeeuee Jeie& Fme ef$eYegpe
kesâ Deboj yeveeÙee ieÙee nw~ Skeâ Deewj Je=òe Jeie& kesâ Deboj
yeveeÙee ieÙee nw~ yeÌ[s Je=òe leLee Úesšs Je=òe kesâ #es$eHeâue keâe
Devegheele keäÙee nw?
(a)
( )
15 12 3 :1 - (b)
( )
4 : 63 36 3 -
(c)
( )
7 4 3 : 8 - (d)
( )
18 3 : 2 -
40. A prism has a regular hexagonal base whose
side is 12 cm. The height of the prism is 24 cm.
It is cut into 4 equal parts by 2 perpendicular
cuts as shown in figure. What is the sum of the
total surface area of the four parts ?
Skeâ efØepce keâe DeeOeej Skeâ mece <ešYegpe nw efpemekeâer Yegpee
12 mes.ceer. nw~ efØepce keâer TBÛeeF& 24 mes.ceer. nw~ Fmes 2
uecyeJele keâšeJe Éeje 4 yejeyej YeeieeW ceW keâeše peelee nw
pewmee efkeâ efÛe$e ceW oMee&Ùee ieÙee nw~ ÛeejeW YeeieeW kesâ kegâue
he=<"erÙe #es$eHeâue keâe Ùeesie keäÙee nw?
Page 5
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
[Exam Date : 9-03-2018, Shift-I
1. How many two digit prime numbers are there
between 10 to 100 which remains prime
numbers when the order of their digits is
reversed ?
10 mes 100 kesâ yeerÛe oes DebkeâeW keâer Ssmeer efkeâleveer DeYeepÙe
mebKÙee nw efpevekesâ DebkeâeW kesâ ›eâce keâes heuešves hej Yeer Jes
Skeâ DeYeepÙe mebKÙee ner jnsieer?
(a) 8 (b) 9
(c) 10 (d) 12
2. How many perfect cubes are there between 1
and 100000 which are divisible by 7.
1 mes 100000 kesâ yeerÛe efkeâleves hetCe& Ieve nQ pees 7 mes
efJeYeeefpele nw?
(a) 5 (b) 6
(c) 7 (d) 15
3. If A = 0.142857142857 ...... and B = 0.16666....,
then what is the value of (A+B)/AB ?
Ùeefo A = 0.142857142857 ...... leLee B =
0.16666.......... nw, lees (A+B)/AB keâe ceeve keäÙee nw?
(a) 10 (b) 11
(c) 12 (d) 13
4. If A = 0.abcabc....., then by what number A
should be multiplied so as to get an integeral
value ?
Ùeefo A = 0.abcabc..... nw, lees A keâes efkeâme mebKÙee mes
iegCee efkeâÙee peeS leeefkeâ Skeâ hetCeeËkeâ ceeve Øeehle nes?
(a) 2997
(b) 1000
(c) 1998
(d) Both 2997 and 1998/2997 leLee 1998 oesveeW
5. What is the sum of
1 1 1 1
1 + 4 + 7 +10 .......
2 6 12 20
upto 20 terms ?
1 1 1 1
1 + 4 + 7 +10 .......
2 6 12 20
kesâ 20 heoeW lekeâ keâe
Ùeesie keäÙee nw?
(a) 12410/21 (b) 12412/21
(c) 12433/21 (d) 1179/2
6. If (1/2
1
) + (1/2
2
) + (1/2
3
) .... (1/2
10
) = 1/k, then
what is the value of k ?
Ùeefo (1/2
1
) + (1/2
2
) + (1/2
3
) .... (1/2
10
) = 1/k nw, lees
k keâe ceeve keäÙee nw?
(a) 512/511 (b) 1024/1023
(c) 511/512 (d) 1023/1024
7. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
2 3 4
1 + 2 + 3 > 8
3 4 5
II.
1 3 1
6 - 5 + 4 > 5
2 4 4
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
8. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. Highest common factor of (3
2002
–1) and
(3
2002
+ 1) is 4/(3
2002
–1) leLee (3
2002
+ 1) keâe cenòece
meceeheJeòe&keâ 4 nw~
II. (4
84
–1) is exactly divisible by 5/(4
84
–1), 5 mes
hetCe&le: efJeYeeefpele nw~
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
9. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 1
99
+ 2
99
+ 3
99
+ 4
99
+ 5
99
is exactly divisible by
5./ 1
99
+ 2
99
+ 3
99
+ 4
99
+ 5
99
mes hetCe&le: efJeYeeefpele nw~
II. 31
11
> 17
14
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
10. N = 2
48
– 1 and N are exactly divisible by two
numbers between 60 and 70. What is the sum
of those two numbers ?
N = 2
48
– 1 leLee N, 60 leLee 70 kesâ yeerÛe oes mebKÙee mes
hetCe&le: efJeYeeefpele nw~ Gve oes mebKÙeeDeeW keâe Ùeesie keäÙee nw?
(a) 128 (b) 256
(c) 64 (d) 512
11. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
4
625 + 1296 + 1024 > 90
II.
( ) ( )
3 4
729 + 256 = 5
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
12. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 1 + 2 + 3 + 4 + 5 + 6 > 10
II. ( ) ( ) ( ) ( ) 10 + 12 + 14 > 3 12
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Neither I nor II/ve lees I ve ner II
(d) Both I and II/I leLee II oesveeW
13. If y
2
= y + 7, then what is the value of y
3
?
Ùeefo y
2
= y + 7 nw, lees y
3
keâe ceeve keäÙee nw?
(a) 8y + 7 (b) y + 14
(c) y + 2 (d) 4y + 7
14. If f(x) = (x–2)/(x
2
+ Px + 4) and (x–3) is a factor
of f(x), then what is the value of P ?
Ùeefo f(x) = (x–2) (x
2
+ Px + 4) leLee (x–3) f(x) keâe
iegCeveKeC[ nw, lees P keâe ceeve keäÙee nw?
(a) 4 (b) –4
(c) –13/3 (d) 13/3
15. If [x–(1/x)] = 2, then what is the value of [x
6
–
(1/x
6
)] ?
Ùeefo [x–(1/x)] = 2 nw, lees [x
6
– (1/x
6
)] keâe ceeve keäÙee
nw?
(a) 114 3 1 + (b) 134 2
(c) 142 2 3 + (d) 140 2
16. x, y and z all are positive number. If 3
x
> 9
y
and
2
y
> 4
z
, then which of the following is TRUE ?
x, y leLee z meYeer Oeveelcekeâ mebKÙee nw~ Ùeefo 3
x
> 9
y
leLee 2
y
> 4
z
nw, lees efvecveefueefKele ceW mes keâewve melÙe nw?
(a) x > y > z (b) x > z > y
(c) z > y > x (d) y > x > z
17. If x = (1/8), which of the following has the
largest values ?
Ùeefo x = (1/8) nw, lees efvecveefueefKele ceW mes efkeâmekeâe ceeve
meyemes yeÌ[e nw?
(a) x/2 (b) x
2
(c) x (d) 1/x
18. If
1
X =
1
1 +
1 + X
and
2
y =
1
2 +
1 + Y
then which
of the following can be the value of X + Y ?
Ùeefo
1
X =
1
1 +
1 + X
leLee
2
y =
1
2 +
1 + Y
nw, lees
efvecveefueefKele ceW mes keâewve mee X + Y keâe ceeve nes mekeâlee
nw?
(a)
( )
5 17 3 / 4 - - + (b)
( )
2 5 17 3 / 4 + -
(c)
( )
5 17 1 / 4 - + + (d)
( )
5 17 1 / 4 + -
19. If P = 2
29
× 3
21
× 5
8
, Q = 2
27
× 3
21
× 5
8
, R = 2
26
×
3
22
× 5
8
and S = 2
25
× 3
22
× 5
9
, then which of the
following is TRUE ?
Ùeefo P = 2
29
× 3
21
× 5
8
, Q = 2
27
× 3
21
× 5
8
, R = 2
26
× 3
22
× 5
8
leLee S = 2
25
× 3
22
× 5
9
nw, lees efvecveefueefKele
ceW mes keâewve melÙe nw?
(a) P > S > R > Q (b) S > P > R > Q
(c) P > R > S > Q (d) S > P > Q > R
20. If A = 125 and B = 8, then what is the value of
(A+B)
3
– (A–B)
3
– 6B (A
2
– B
2
) ?
Ùeefo A = 125 leLee B = 8, nw, lees (A+B)
3
– (A–B)
3
–
6B (A
2
– B
2
) keâe ceeve keäÙee nw?
(a) 4096 (b) 4608
(c) 4224 (d) 3456
21. If
z x
y z
x = 1, y = 125 and
x
y
z = 243 (x, y and z
are natural numbers), then what is the value of
9x + 10y – 18z ?
Ùeefo
z x
y z
x = 1, y = 125leLee
x
y
z = 243nw (x, y leLee
z Øeeke=âeflekeâ mebKÙeeSB nQ), lees 9x + 10y – 18z keâe ceeve
keäÙee nw?
(a) 18 (b) 15
(c) 12 (d) 5
22. If 3x + 6y + 9z
20
=
3
, 6x + 9y + 3z
17
=
3
and 18x
+ 27y – z
113
=
9
, then what is the value of 75x +
113y ?
Ùeefo 3x + 6y + 9z
20
=
3
, 6x + 9y + 3z
17
=
3
leLee
18x + 27y – z
113
=
9
nw, lees 75x + 113y keâe ceeve
keäÙee nw?
(a) 163/3 (b) 143/6
(c) 218/9 (d) 311/3
23. If sides of a triangle are 12 cm, 15 cm and 21
cm, then what is the inradius (in cm) of the
triangle ?
Ùeefo Skeâ ef$eYegpe keâer YegpeeSB 12 mes.ceer., 15 mes.ceer. leLee
21 mes.ceer. nw, lees ef$eYegpe keâer Deble: ef$epÙee (mes.ceer. ceW)
keäÙee nw?
(a)
( )
5 3 / 2 (b) 4 3
(c)
( )
3 6 / 2 (d) 3 3
24. In a triangle ABC, AB = 12, BC = 18 and AC =
15. The medians AX and BY intersect sides BC
and AC at X and Y respectively. If AX and BY
intersect each other at O, then what is the value
of OX ?
Skeâ ef$eYegpe ABC ceW, AB = 12, BC = 18 leLee AC =
15 nw~ ceeOÙe jsKee AX leLee BY Yegpee BC leLee AC keâes
›eâceMe: X leLee Y hej ØeefleÛÚso keâjleer nw~ Ùeefo AX leLee
BY, O hej ØeefleÛÚsove keâjles nQ, lees OX keâe ceeve keäÙee
nw?
(a) 4 23 (b) 23
(c) 2 23 (d)
( ) ( )
23 / 2
25. In a triangle PQR, PX bisects QR, PX is the
angle bisector of angle P. If PQ = 12 cm and
QX = 3 cm, then what is the area (in cm
2
) of
triangle PQR ?
Skeâ ef$eYegpe PQR ceW, PX, QR keâe efÉYeepekeâ nw~ PX,
keâesCe P keâe efÉYeepekeâ nw~ Ùeefo PQ = 12 mes.ceer. leLee
QX = 3 mes.ceer. nw, lees ef$eYegpe PQR keâe #es$eHeâue
(mes.ceer.
2
ceW) keäÙee nw?
(a) 12 3 (b) 8 15
(c) 18 2 (d) 9 15
26. In the given figure PT : TS : SR = 2 : 1 : 1 and
SU is parallel to TQ. If RU = 10 cm, RS = 8 cm
and SU = 6 cm, then what is the value (in cm)
of PQ ?
oer ieF& Deeke=âefle ceW, PT : TS : SR = 2 : 1 : 1 leLee
SU, TQ kesâ meceeveevlej nw~ Ùeefo RU = 10 mes.ceer., RS =
8 mes.ceer. leLee SU = 6 mes.ceer. nw, lees PQ keâe ceeve
(mes.ceer. ceW) keäÙee nw?
(a) 12 (b) 10
(c) 20 (d) 30
27. PQ and RS are two chords of a circle. PQ = 20
cm, RS = 48 cm and PQ is parallel to RS. If the
distance between PQ and RS is 34 cm, then
what is the area (in cm
2
) of the circle ?
PQ leLee RS Skeâ Je=òe keâer oes peerJeeSB nw~ PQ = 20
mes.ceer., RS = 48 mes.ceer. leLee PQ, RS kesâ meceeveevlej nw~
Ùeefo PQ leLee RS kesâ ceOÙe otjer 34 mes.ceer. nw, lees Je=òe
keâe #es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a) 729p (b) 900p
(c) 676p (d) 784p
28. Centre of two concentric circles is O. The area
of two circles is 616 cm
2
and 154 cm
2
respectively. A tangent is drawn through point
A on the larger circle to the smaller circle. This
tangent touches smaller circle at B and
intersects larger circle at C. What is the length
(in cm) of AC ?
oes mebkeWâefvõle Je=òe keâe kesâvõ O nw~ oesveeW Je=òeeW keâe
#es$eHeâue 616 mes.ceer.
2
leLee 154 mes.ceer.
2
nw~ yeÌ[s Je=òe kesâ
efyevog A mes Úesšs Je=òe hej Skeâ mheMe& jsKee KeeRÛeer ieF& nw~
Ùen mheMe& jsKee Úesšs Je=òe keâes efyevog B hej mheMe& keâjleer nw
leLee yeÌ[s Je=òe keâes efyevog C hej ØeefleÛÚso keâjleer nw~ AC
keâer uecyeeF& (mes.ceer. ceW) keäÙee nw?
(a) 12 3 (b) 14 3
(c) 10 6 (d) 18 2
29. PA and PB are two tangents drawn to two
circles of radius 3 cm and 5 cm respectively. PA
touches the smaller and larger circles at points
X and Y respectively. PB touches the smaller
and larger circle at point U and V respectively.
The centres of the smaller and larger circles O
and N respectively. If ON = 12 cm, then what is
the value (in cm) of PY ?
PA leLee PB ›eâceMe: 3 mes.ceer. leLee 5 mes.ceer. Jeeues oes
Je=òeeW hej mheMe& jsKeeSB yeveeF& ieF& nw~ PA Úesšs leLee yeÌ[s
Je=òeeW keâes ›eâceMe: X leLee Y efyevog hej mheMe& keâjleer nw~
PB Úesšs leLee yeÌ[s Je=òe keâes ›eâceMe: U leLee V efyevog hej
mheMe& keâjleer nw~ O leLee N ›eâceMe: Úesšs leLee yeÌ[s Je=òe kesâ
kesâvõ nQ~ Ùeefo ON = 12 mes.ceer. nw, lees PY keâe ceeve
(mes.ceer. ceW) keäÙee nw?
(a) 5 35 (b) 7 15
(c) 9 15 (d) 12 5
30. XR is a tangent to the circle. O is the centre of
the circle. If ?XRP = 120
0
, then what is the
value (in degrees) of ?QOR ?
XR Je=òe hej Skeâ mheMe& jsKee nw~ O Je=òe keâe kesâvõ nw~
Ùeefo ?XRP = 120
0
nw, lees ?QOR keâe ceeve (ef[«eer
ceW) keäÙee nw?
(a) 80 (b) 70
(c) 60 (d) 40
31. O is the centre of the circle. A tangent is drawn
which touches the circle at C. If ?AOC = 80
0
,
then what is the value (in degrees) of ?BCX ?
O Je=òe keâe kesâvõ nw~ Skeâ mheMe& jsKee yeveeF& ieF& nw pees
Je=òe keâes C hej mheMe& keâjleer nw~ Ùeefo ?AOC = 80
0
nw,
lees ?BCX keâe ceeve (ef[«eer ceW) keäÙee nesiee?
(a) 80 (b) 30
(c) 40 (d) 50
32. The distance between the centres of two circles
is 24 cm. If the radius of the two circles are 4
cm and 8 cm, then what is the sum of the
lengths (in cm) of the direct common tangent
and the transverse common tangent ?
oes Je=òeeW kesâ kesâvõ kesâ ceOÙe keâer otjer 24 mes.ceer. nw~ Ùeefo
oes Je=òe keâer ef$epÙee 4 mes.ceer. leLee 8 mes.ceer. nw, lees
GYeÙeefve<" DevegmheMe& jsKee leLee efleÙe&keâ GYeÙeefve<"
DevegmheMe& jsKee (mes.ceer. ceW) keâe Ùeesie keäÙee nw?
(a)
( )
4 3 3 35 + (b)
( )
4 4 35 3 3 +
(c)
( )
4 35 3 3 + (d)
( )
4 3 35 3 3 +
33. ABC is triangle. AB = 10 cm and BC = 16 cm.
AD = 8 cm and is perpendicular to side BC.
What is the length (in cm) of side AC ?
ABC Skeâ ef$eYegpe nw~ AB = 10 mes.ceer. leLee BC = 16
mes.ceer. nw~ AD = 8 mes.ceer. nw leLee Ùen Yegpee BC kesâ
meceuecye nw~ Yegpee AC keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 4 41 (b) 2 41
(c) 2 82 (d) 4 82
34. An equilateral triangle of side 12 cm is drawn.
What is the area (in cm
2
) of the largest square
which can be drawn inside it ?
12 mes.ceer. Yegpee Jeeuee Skeâ meceyeeng ef$eYegpe yeveeÙee ieÙee~
FmeceW yeveeÙes pee mekeâves Jeeues meyemes yeÌ[s Jeie& keâe
#es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a) 1512 864 3 - (b) 3024 1728 3 -
(c) 3024 1728 3 + (d) 1512 864 3 +
35. PQRS is a rectangle. The ratio of the sides PQ
and QR is 3 : 1. If the length of the diagonal PR
is 10 cm, then what is the area (in cm
2
) of the
rectangle ?
PQRS Skeâ DeeÙele nw~ Yegpee PQ leLee QR keâe Devegheele
3 : 1 nw~ Ùeefo efJekeâCe& PR keâer uecyeeF& 10 mes.ceer. nw, lees
DeeÙele keâe #es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a) 15 (b) 30
(c) 45 (d) 20
36. ABCDEF is a regular hexagon. What is the
ratio of the area of triangle ACE and area of
triangle AEF ?
ABCDEF Skeâ mece<ešYegpe nw~ ef$eYegpe ACE kesâ
#es$eHeâue leLee ef$eYegpe AEF kesâ #es$eHeâue keâe Devegheele
keäÙee nw?
(a) 6 : 1 (b) 4 : 1
(c) 3 : 1 (d) 5 : 1
37. ABCD is trapezium. Sides AB and CD are
parallel to each other. AB = 6 cm, CD = 18 cm,
BC = 8 cm and AD = 12 cm. A line parallel to
AB divides the trapezium in two parts of equal
perimeter. This line cuts BC at E and AD at F.
If BE/EC = AF/FD, then what is the value of
BE/EC ?
ABCD Skeâ meceuecye nw~ YegpeeSB AB leLee CD Skeâ
otmejs kesâ meceevlej nw~ AB = 6 mes.ceer., CD = 18 mes.ceer.,
BC = 8 mes.ceer. leLee AD = 12 mes.ceer. nw~ AB kesâ
meceevlej Skeâ jsKee meceuecye keâes oes yejeyej heefjceehe Jeeues
efnmmeeW ceW keâešlee nw~ Ùen jsKee Yegpee BC keâes E hej leLee
AD keâes F hej keâešleer nw~ Ùeefo BE/EC=AF/FD nw, lees
BE/EC keâe ceeve keäÙee nw?
(a) 1/2 (b) 2
(c) 4 (d) 1/4
38. A rectangular sheet of length 42 cm and
breadth 14 cm is cut from a circular sheet.
What is the minimum area (in cm
2
) of circular
sheet ?
Skeâ Je=òeekeâej Ûeeoj mes 42 mes.ceer. uecyeer leLee 14
mes.ceer. ÛeewÌ[er Skeâ DeeÙeleekeâej Ûeeoj keâešer ieF& nw~
Je=òeekeâej Ûeeoj keâe #es$eHeâue (mes.ceer.
2
ceW) keâce mes keâce
keäÙee nw?
(a) 3080 (b) 1540
(c) 770 (d) 1030
39. An equilateral triangle ABC is inscribed in a
circle as shown in figure. A square of largest
possible area is made inside this triangle as
shown. Another circle made inscribing the
square. What is the ratio of large circle and the
small circle ?
pewmee efkeâ Deeke=âefle ceW oMee&Ùee ieÙee nw, Skeâ mece ef$eYegpe
ABC Skeâ Je=òe ceW yeveeÙee ieÙee nw~ pewmee oMee&Ùee ieÙee
nw, meyemes yeÌ[s mebYeeefJele #es$eHeâue Jeeuee Jeie& Fme ef$eYegpe
kesâ Deboj yeveeÙee ieÙee nw~ Skeâ Deewj Je=òe Jeie& kesâ Deboj
yeveeÙee ieÙee nw~ yeÌ[s Je=òe leLee Úesšs Je=òe kesâ #es$eHeâue keâe
Devegheele keäÙee nw?
(a)
( )
15 12 3 :1 - (b)
( )
4 : 63 36 3 -
(c)
( )
7 4 3 : 8 - (d)
( )
18 3 : 2 -
40. A prism has a regular hexagonal base whose
side is 12 cm. The height of the prism is 24 cm.
It is cut into 4 equal parts by 2 perpendicular
cuts as shown in figure. What is the sum of the
total surface area of the four parts ?
Skeâ efØepce keâe DeeOeej Skeâ mece <ešYegpe nw efpemekeâer Yegpee
12 mes.ceer. nw~ efØepce keâer TBÛeeF& 24 mes.ceer. nw~ Fmes 2
uecyeJele keâšeJe Éeje 4 yejeyej YeeieeW ceW keâeše peelee nw
pewmee efkeâ efÛe$e ceW oMee&Ùee ieÙee nw~ ÛeejeW YeeieeW kesâ kegâue
he=<"erÙe #es$eHeâue keâe Ùeesie keäÙee nw?
(a) 1728 432 3 + (b) 2880 1008 3 +
(c) 2880 432 3 + (d) 1728 1008 3 +
41. Four identical cones each of radius 10.5 cm and
height 14 cm are cut from a cuboid of
dimensions 30 cm × 32 cm × 40 cm (base of
each cone lies on the surface of cuboid). What
is the total surface area (in cm
2
) of the
remaining solid ?
10.5 mes.ceer. ef$epÙee leLee 14 mes.ceer. TBÛeeF& Jeeues Ûeej
meceeve MebkegâDeeW keâes Skeâ IeveeYe ceW mes keâeše ieÙee nw
efpemekesâ DeeÙeece 30 mes.ceer. × 32 mes.ceer. × 40 mes.ceer.
nw (ØelÙeskeâ Mebkegâ keâe DeeOeej IeveeYe keâer melen hej nw)
yeÛes ngS "esme keâe kegâue he=<"erÙe (mes.ceer.
2
ceW) keäÙee nw?
(a) 6528 (b) 7804
(c) 5926 (d) 6824
42. A hollow cylinder of thickness 0.7 cm and
height 15 cm is made of iron. If inner radius of
cylinder is 3.5 cm, then what is the total surface
area (in cm
2
) of the hollow cylinder ?
Skeâ ueesns mes yeves Keeueer yesueve keâer ÛeewÌ[eF& 0.7 mes.ceer.
leLee TBÛeeF& 15 mes.ceer. nw~ Ùeefo yesueve keâer Deebleefjkeâ
ef$epÙee 3.5 mes.ceer. nw, lees Keeueer yesueve keâe kegâue he=<"erÙe
(mes.ceer.
2
ceW) keäÙee nw?
(a) 812.12 (b) 768.42
(c) 759.88 (d) 828.42
43. A hollow cylinder has height 90 cm and the
outer curved surface area is 11880 cm
2
. It can
hold 55440 cm
3
of air inside it. What is the
thickness (in cm) of this cylinder ?
Skeâ Keeueer yesueve keâer TBÛeeF& 90 mes.ceer. leLee Jee¢e Je›eâ
he=<"erÙe #es$eHeâue 11880 mes.ceer.
2
nw~ Ùen 55440 mes.ceer.
3
JeeÙeg Deheves Deboj jKe mekeâlee nw~ yesueve keâer ceesšeF&
(mes.ceer. ceW) keäÙee nw?
(a) 10.5 (b) 14
(c) 7 (d) 3.5
44. A hollow sphere is melted to form small
identical hollw spheres. Inner and outer radius
of the bigger sphere are 4 cm and 6 cm
respectively. If inner and outer radii of the
smaller sphere are 2 cm and 3 cm respectively,
then how many smaller spheres can be formed?
Skeâ Keeueer ieesues keâes efheIeueekeâj meceeve Keeueer Úesšs
ieesues yeveeS ieS nQ~ yeÌ[s ieesues keâer Deelebefjkeâ leLee yee¢e
ef$epÙee ›eâceMe: 4 mes.ceer. leLee 6mes.ceer. nw~ Ùeefo Úesšs
ieesues keâer Deebleefjkeâ leLee yee¢e ef$epÙee ›eâceMe: 2 mes.ceer.
leLee 3 mes.ceer. nw, lees efkeâleves Úesšs ieesues yeve mekeâles nQ?
(a) 4 (b) 8
(c) 6 (d) 12
45. A hemispherical dome is open from its base
and is made of iron. Thickness of dome is 3.5
meter. Total cost of painting domes outer
curved surface is Rs. 2464. If the rate of
painting is Rs. 8 per meter
2
, then what is the
volume (in meter
3
) of iron used in making
dome ?
Skeâ DeOe&ieesueekeâej iegcyeo Deheves DeeOeej mes Keguee nw
leLee ueesns mes yevee nw~ iegcyeo keâer ceesšeF& 3.5 ceeršj nw~
iegcyeo kesâ yeenj keâer Je›eâerÙe melen keâes heWš keâjves ceW kegâue
2464®. keâe KeÛee& neslee nw~ Ùeefo heWefšbie keâer oj 8 ®.
Øeefle ceeršj
2
nw, lees iegcyeo keâes yeveeves ceW ØeÙeesie ngS ueesns
keâe DeeÙeleve (ceeršj
3
ceW) keäÙee nesiee?
(a) 656.42 (b) 614.21
(c) 524.46 (d) 628.83
46. A solid cuboid has dimensions 14 cm × 18 cm ×
24 cm. A hemisphere of radius 3.5 cm is cut
from the centre of each face of cuboid. What is
the total surface area (in cm
2
) of the remaining
solid ?
Skeâ "esme IeveeYe kesâ DeeÙeece 14 mes.ceer.×18 mes.ceer. ×
24 mes.ceer. nw~ IeveeYe kesâ ØelÙeskeâ melen kesâ kesâvõ mes 3.5
mes.ceer. ef$epÙee Jeeuee Skeâ DeOe&ieesuee keâeše ieÙee~ Mes<e
"esme keâe kegâue he=<"erÙe #es$eHeâue (mes.ceer.
2
ceW) keäÙee
nesiee?
(a) 1902 (b) 1809
(c) 1706 (d) 2271
47. A right pyramid with square base has side of
base 12 cm and height 40 cm. It is kept on its
base. It is cut into 4 parts of equal heights by 3
cuts parallel to its base. What is the ratio of
volume of the four parts ?
Skeâ Jeie& DeeOeej Jeeues efhejeefce[ kesâ DeeOeej keâer Yegpee
12 mes.ceer. leLee TBÛeeF& 40 mes.ceer. nw~ Fmes Fmekesâ DeeOeej
hej jKee ieÙee nw~ Fmes 3 keâšeJeeW mes Fmekesâ DeeOeej kesâ
meceevlej yejeyej TBÛeeF& Jeeues 4 YeeieeW ceW keâeše ieÙee~
ÛeejeW YeeieeW kesâ DeeÙeleve keâe Devegheele keäÙee nw?
(a) 1 : 8 : 27 : 70 (b) 1 : 7 : 19 : 47
(c) 1 : 7 : 19 : 37 (d) 1 : 8 : 27 : 64
48. What is the value of 2 sin 15
0
cos 15
0
– 4 sin
3
15
0
cos 15
0
?
2 sin 15
0
cos 15
0
– 4 sin
3
15
0
cos 15
0
keâe ceeve keäÙee
nw?
(a) 3/ 2 (b) 3 / 2
(c) 3 / 4 (d) 1/2
49. If sin x = 1/2 and sin y = 2/3, then what is the
value of [(6cos
2
x–4 cos
4
x)/(18 cos
2
y–27cos
4
y)]?
Ùeefo sin x = 1/2 leLee sin y = 2/3 nw, lees [(6 cos
2
x –
4 cos
4
x)/(18 cos
2
y–27 cos
4
y)] keâe ceeve keäÙee nw?
(a) 27/20 (b) 15/14
(c) 25/21 (d) 17/14
50. What is the value of cos 15
0
+ cos 105
0
?
cos 15
0
+ cos 105
0
keâe ceeve keäÙee nw?
Read More