Page 1
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 21-2-2018] [Time : 10 AM to 12 PM
1. If A = 1 – 10 + 3 – 12 + 5 – 14 + 7 + ....... upto 60
terms, then what is the value of A ?
Ùeefo A = 1 – 10 + 3 – 12 + 5 – 14 + 7 + ....... 60
heoeW lekeâ nQ, lees A keâe ceeve keäÙee nw?
(a) –360 (b) –310
(c) –240 (d) –270
2. How many natural numbers are there between
1000 to 2000, which when divided by 341 leaves
remainder 5 ?
1000 mes 2000 kesâ ceOÙe Ssmeer efkeâleveer Øeeke=âeflekeâ
mebKÙeeSB nQ efpevnW 341 mes efJeYeeefpele keâjves hej
Mes<eHeâue 5 yeÛelee nw?
(a) 3 (b) 2
(c) 4 (d) 1
3. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. ( ) ( ) ( ) ( ) 64 + 0.0064 + 0.81 + 0.0081 = 9.07
II. ( ) ( ) ( ) 0.010201 + 98.01 + 0.25 = 11.51
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
4. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve-mee/mes keâLeve melÙe nw/nQ?
I. (0.7)
2
+ (0.07)
2
+ (11.1)
2
> 123.8
II. (1.12)
2
+ (10.3)
2
+ (1.05)
2
> 108.3
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
5. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
1 1 1 1 12
+ + + ... + =
1× 3 3×5 5×7 11×13 13
II.
1 1 1 1 12
+ + + ... + =
1× 2 2× 3 3× 4 12×13 13
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
6. Which of the following statement(s) is/are
TRUE?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 3/71 < 5/91 < 7/99
II. 11/135 > 12/157 > 13/181
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
7. If 1 + (1/2) + (1/3) +....+ (1/20) = k, then what is
the value of (1/4) + (1/6) + (1/8) + ....+ (1/40) ?
Ùeefo 1 + (1/2) + (1/3) +....+ (1/20) = k nw, lees (1/4)
+ (1/6) + (1/8) + ....+ (1/40) keâe ceeve keäÙee nw?
(a) k/2 (b) 2k
(c) (k – 1)/2 (d) (k + 1)/2
8. If A = 2
32
, B = 2
31
+ 2
30
+ 2
29
+...+ 2
0
and C = 3
15
+ 3
14
+ 3
13
+ ....+ 3
0
, then which of the following
option is TRUE ?
Ùeefo A = 2
32
, B = 2
31
+ 2
30
+ 2
29
+...+ 2
0
leLee C =
3
15
+ 3
14
+ 3
13
+ ....+ 3
0
nw, lees efvecveefueefKele ceW mes
keâewve mee efJekeâuhe melÙe nw?
(a) C > B > A (b) C > A > B
(c) A > B > C (d) A > C > B
9. If x + y = 10 and xy = 4, then what is the value
of x
4
+ y
4
?
Ùeefo x + y = 10 leLee xy = 4 nQ, lees x
4
+ y
4
keâe ceeve
keäÙee nw?
(a) 8464 (b) 8432
(c) 7478 (d) 6218
10. M is the largest three digit number which when
divided by 6 and 5 leaves remainder 5 and 3
respectively. What will be the remainder when
M is divided by 11 ?
M leerve DebkeâeW keâer meyemes yeÌ[er mebKÙee nw efpemes, peye 6
leLee 5 mes efJeYeeefpele efkeâÙee peelee nw lees Mes<eHeâue ›eâceMe:
5 leLee 3 Deelee nw~ peye M keâes 11 mes efJeYeeefpele efkeâÙee
peeÙes lees Mes<eHeâue keäÙee nesiee?
(a) 1 (b) 2
(c) 3 (d) 4
11. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 5 + 5 > 7 + 3
II. 6 + 7 > 8 + 5
III. 3 + 9 > 6 + 6
Page 2
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 21-2-2018] [Time : 10 AM to 12 PM
1. If A = 1 – 10 + 3 – 12 + 5 – 14 + 7 + ....... upto 60
terms, then what is the value of A ?
Ùeefo A = 1 – 10 + 3 – 12 + 5 – 14 + 7 + ....... 60
heoeW lekeâ nQ, lees A keâe ceeve keäÙee nw?
(a) –360 (b) –310
(c) –240 (d) –270
2. How many natural numbers are there between
1000 to 2000, which when divided by 341 leaves
remainder 5 ?
1000 mes 2000 kesâ ceOÙe Ssmeer efkeâleveer Øeeke=âeflekeâ
mebKÙeeSB nQ efpevnW 341 mes efJeYeeefpele keâjves hej
Mes<eHeâue 5 yeÛelee nw?
(a) 3 (b) 2
(c) 4 (d) 1
3. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. ( ) ( ) ( ) ( ) 64 + 0.0064 + 0.81 + 0.0081 = 9.07
II. ( ) ( ) ( ) 0.010201 + 98.01 + 0.25 = 11.51
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
4. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve-mee/mes keâLeve melÙe nw/nQ?
I. (0.7)
2
+ (0.07)
2
+ (11.1)
2
> 123.8
II. (1.12)
2
+ (10.3)
2
+ (1.05)
2
> 108.3
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
5. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
1 1 1 1 12
+ + + ... + =
1× 3 3×5 5×7 11×13 13
II.
1 1 1 1 12
+ + + ... + =
1× 2 2× 3 3× 4 12×13 13
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
6. Which of the following statement(s) is/are
TRUE?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 3/71 < 5/91 < 7/99
II. 11/135 > 12/157 > 13/181
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
7. If 1 + (1/2) + (1/3) +....+ (1/20) = k, then what is
the value of (1/4) + (1/6) + (1/8) + ....+ (1/40) ?
Ùeefo 1 + (1/2) + (1/3) +....+ (1/20) = k nw, lees (1/4)
+ (1/6) + (1/8) + ....+ (1/40) keâe ceeve keäÙee nw?
(a) k/2 (b) 2k
(c) (k – 1)/2 (d) (k + 1)/2
8. If A = 2
32
, B = 2
31
+ 2
30
+ 2
29
+...+ 2
0
and C = 3
15
+ 3
14
+ 3
13
+ ....+ 3
0
, then which of the following
option is TRUE ?
Ùeefo A = 2
32
, B = 2
31
+ 2
30
+ 2
29
+...+ 2
0
leLee C =
3
15
+ 3
14
+ 3
13
+ ....+ 3
0
nw, lees efvecveefueefKele ceW mes
keâewve mee efJekeâuhe melÙe nw?
(a) C > B > A (b) C > A > B
(c) A > B > C (d) A > C > B
9. If x + y = 10 and xy = 4, then what is the value
of x
4
+ y
4
?
Ùeefo x + y = 10 leLee xy = 4 nQ, lees x
4
+ y
4
keâe ceeve
keäÙee nw?
(a) 8464 (b) 8432
(c) 7478 (d) 6218
10. M is the largest three digit number which when
divided by 6 and 5 leaves remainder 5 and 3
respectively. What will be the remainder when
M is divided by 11 ?
M leerve DebkeâeW keâer meyemes yeÌ[er mebKÙee nw efpemes, peye 6
leLee 5 mes efJeYeeefpele efkeâÙee peelee nw lees Mes<eHeâue ›eâceMe:
5 leLee 3 Deelee nw~ peye M keâes 11 mes efJeYeeefpele efkeâÙee
peeÙes lees Mes<eHeâue keäÙee nesiee?
(a) 1 (b) 2
(c) 3 (d) 4
11. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 5 + 5 > 7 + 3
II. 6 + 7 > 8 + 5
III. 3 + 9 > 6 + 6
(a) Only I/ kesâJeue I
(b) Only I and II/kesâJeue I leLee II
(c) Only II and III/kesâJeue II leLee III
(d) Only I and III/ kesâJeue I leLee III
12. If
3 + 2
a =
3 - 2
and
3 - 2
b =
3 + 2
then what is
the value of a
2
+ b
2
– ab ?
Ùeefo
3 + 2
a =
3 - 2
leLee
3 - 2
b =
3 + 2
nQ, lees a
2
+
b
2
– ab keâe ceeve keäÙee nw?
(a) 97 (b)
( )
2 3 2 +
(c)
( )
4 6 1 + (d) 98
13. If the difference between the roots of the
equation Ax
2
– Bx + C = 0 is 4, then which of
the following is TRUE ?
Ùeefo meceerkeâjCe Ax
2
– Bx + C = 0 kesâ cetueeW keâe Deblej
4 nw, lees efvecveefueefKele ceW mes keâewve mee melÙe nw?
(a) B
2
– 16 A
2
= 4AC + 4B
2
(b) B
2
– 10 A
2
= 4AC + 6A
2
(c) B
2
– 8A
2
= 4AC + 10A
2
(d) B
2
– 16 A
2
= 4AC + 8B
2
14. a and ß are the roots of quadratic equation. If
a + ß = 8 and a–ß = 2 5 , then which of the
following equation will have roots a
4
and ß
4
?
a leLee ß efÉIeele meceerkeâjCe kesâ cetue nQ~ Ùeefo a + ß = 8
leLee a–ß = 2 5 nQ, lees a
4
leLee ß
4
efvecveefueefKele ceW
mes efkeâme meceerkeâjCe kesâ cetue nQ?
(a) x
2
– 1522x + 14641 = 0
(b) x
2
– 1921x + 14641 = 0
(c) x
2
– 1764x + 14641 = 0
(d) x
2
– 2520x + 14641 = 0
15. If a and b are the roots of the equation Px
2
–
Qx + R = 0, then what is the value of (1/a
2
) +
(1/b
2
) + (a/b) + (b/a) ?
Ùeefo a leLee b meceerkeâjCe Px
2
– Qx + R = 0 kesâ
cetue nQ, lees (1/a
2
) + (1/b
2
) + (a/b) + (b/a) keâe
ceeve keäÙee nw?
(a)
( )( )
2
2
Q 2P 2R P
PR
- +
(b)
( )( )
2
2
Q 2PR R P
PR
- +
(c)
( )( )
2
2 2
Q 2R 2P R
P R
- +
(d)
( )( )
2
2 2
Q 2PR 2R 2P
P R
- +
16. If x
2
– 16x + 59 = 0, then what is the value of
(x–6)
2
+ [1/(x–6)
2
] ?
Ùeefo x
2
– 16x + 59 = 0, nw, lees (x–6)
2
+ [1/(x–6)
2
]
keâe ceeve keäÙee nw?
(a) 14 (b) 18
(c) 16 (d) 20
17. If A and B are the roots of the equation Ax
2
–
A
2
x + AB = 0, then what is the value of A and B
respectively ?
Ùeefo A leLee B meceerkeâjCe Ax
2
– A
2
x + AB = 0, kesâ
cetue nQ, lees ›eâceMe: A leLee B keâe ceeve keäÙee nw?
(a) 1, 0 (b) 1, 1
(c) 0, 2 (d) 0, 1
18. a and ß are the roots of the quadratic equation
x
2
– x–1 = 0. What is the value of a
8
+ ß
8
?
a leLee ß efÉIeele meceerkeâjCe x
2
– x–1 = 0 kesâ cetue nQ~
a
8
+ ß
8
keâe ceeve keäÙee nw?
(a) 47 (b) 54
(c) 59 (d) 68
19. If a + b + c = 9, ab + bc + ca = 26, a
3
+ b
3
= 91,
b
3
+ c
3
= 72 and c
3
+ a
3
= 35, then what is the
value of abc ?
Ùeefo a + b + c = 9, ab + bc + ca = 27, a
3
+ b
3
=
91, b
3
+ c
3
= 72 leLee c
3
+ a
3
= 35 nQ, lees abc keâe
ceeve keäÙee nw?
(a) 48 (b) 24
(c) 36 (d) 42
20. If x
3
– 4x
2
+ 19 = 6(x–1), then what is the value
of [x
2
+ (1/x – 4)] ?
Ùeefo x
3
– 4x
2
+ 19 = 6(x–1) nw, lees [x
2
+ (1/x – 4)]
keâe ceeve keäÙee nw?
(a) 3 (b) 5
(c) 6 (d) 8
21. Cost of 8 pencils, 5 pens and 3 erasers is Rs.
111. Cost of 9 pencils, 6 pens and 5 erasers is
Rs. 130. Cost of 16 pencils, 11 pens and 3
erasers is Rs. 221. What is the cost (in Rs.) of 39
pencils 26 pens and 13 erasers ?
8 heWefmeue, 5 keâuece leLee 3 jyeÌ[ keâe cetuÙe 111 ® nw~
9 heWefmeue, 6 keâuece leLee 5 jyeÌ[ keâe cetuÙe 130 ® nw~
16 heWefmeue, 11 keâuece leLee 3 jyeÌ[ keâe cetuÙe 221 ®
nw~ 39 heWefmeue, 26 keâuece leLee 13 jyeÌ[ keâe cetuÙe (®
ceW) keäÙee nw?
(a) 316 (b) 546
(c) 624 (d) 482
22. If 2x + 3y – 5z = 18, 3x + 2y + z = 29 and x + y +
3z = 17, then what is the value of xy + yz + zx ?
Ùeefo 2x + 3y – 5z = 18, 3x + 2y + z = 29 leLee x + y
+ 3z = 17, nQ, lees xy + yz + zx keâe ceeve keäÙee nw?
(a) 32 (b) 52
(c) 64 (d) 46
23. PQR is an equilateral triangle whose side is 10
cm. What is the value (in cm) of the inradius of
triangle PQR ?
PQR Skeâ meceyeeng ef$eYegpe nQ efpemekeâer Yegpee 10 mesceer.
nQ~ ef$eYegpe PQR keâer Deble: ef$epÙee keâe ceeve (mes.ceer. ceW)
keäÙee nw?
(a) 5/ 3 (b) 10/ 3
(c) 10/ 3 (d) 5/ 2
24. What is the area (in cm
2
) of the circumcircle of
a triangle whose sides are 6 cm, 8 cm and 10 cm
respectively ?
Page 3
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 21-2-2018] [Time : 10 AM to 12 PM
1. If A = 1 – 10 + 3 – 12 + 5 – 14 + 7 + ....... upto 60
terms, then what is the value of A ?
Ùeefo A = 1 – 10 + 3 – 12 + 5 – 14 + 7 + ....... 60
heoeW lekeâ nQ, lees A keâe ceeve keäÙee nw?
(a) –360 (b) –310
(c) –240 (d) –270
2. How many natural numbers are there between
1000 to 2000, which when divided by 341 leaves
remainder 5 ?
1000 mes 2000 kesâ ceOÙe Ssmeer efkeâleveer Øeeke=âeflekeâ
mebKÙeeSB nQ efpevnW 341 mes efJeYeeefpele keâjves hej
Mes<eHeâue 5 yeÛelee nw?
(a) 3 (b) 2
(c) 4 (d) 1
3. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. ( ) ( ) ( ) ( ) 64 + 0.0064 + 0.81 + 0.0081 = 9.07
II. ( ) ( ) ( ) 0.010201 + 98.01 + 0.25 = 11.51
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
4. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve-mee/mes keâLeve melÙe nw/nQ?
I. (0.7)
2
+ (0.07)
2
+ (11.1)
2
> 123.8
II. (1.12)
2
+ (10.3)
2
+ (1.05)
2
> 108.3
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
5. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
1 1 1 1 12
+ + + ... + =
1× 3 3×5 5×7 11×13 13
II.
1 1 1 1 12
+ + + ... + =
1× 2 2× 3 3× 4 12×13 13
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
6. Which of the following statement(s) is/are
TRUE?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 3/71 < 5/91 < 7/99
II. 11/135 > 12/157 > 13/181
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
7. If 1 + (1/2) + (1/3) +....+ (1/20) = k, then what is
the value of (1/4) + (1/6) + (1/8) + ....+ (1/40) ?
Ùeefo 1 + (1/2) + (1/3) +....+ (1/20) = k nw, lees (1/4)
+ (1/6) + (1/8) + ....+ (1/40) keâe ceeve keäÙee nw?
(a) k/2 (b) 2k
(c) (k – 1)/2 (d) (k + 1)/2
8. If A = 2
32
, B = 2
31
+ 2
30
+ 2
29
+...+ 2
0
and C = 3
15
+ 3
14
+ 3
13
+ ....+ 3
0
, then which of the following
option is TRUE ?
Ùeefo A = 2
32
, B = 2
31
+ 2
30
+ 2
29
+...+ 2
0
leLee C =
3
15
+ 3
14
+ 3
13
+ ....+ 3
0
nw, lees efvecveefueefKele ceW mes
keâewve mee efJekeâuhe melÙe nw?
(a) C > B > A (b) C > A > B
(c) A > B > C (d) A > C > B
9. If x + y = 10 and xy = 4, then what is the value
of x
4
+ y
4
?
Ùeefo x + y = 10 leLee xy = 4 nQ, lees x
4
+ y
4
keâe ceeve
keäÙee nw?
(a) 8464 (b) 8432
(c) 7478 (d) 6218
10. M is the largest three digit number which when
divided by 6 and 5 leaves remainder 5 and 3
respectively. What will be the remainder when
M is divided by 11 ?
M leerve DebkeâeW keâer meyemes yeÌ[er mebKÙee nw efpemes, peye 6
leLee 5 mes efJeYeeefpele efkeâÙee peelee nw lees Mes<eHeâue ›eâceMe:
5 leLee 3 Deelee nw~ peye M keâes 11 mes efJeYeeefpele efkeâÙee
peeÙes lees Mes<eHeâue keäÙee nesiee?
(a) 1 (b) 2
(c) 3 (d) 4
11. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 5 + 5 > 7 + 3
II. 6 + 7 > 8 + 5
III. 3 + 9 > 6 + 6
(a) Only I/ kesâJeue I
(b) Only I and II/kesâJeue I leLee II
(c) Only II and III/kesâJeue II leLee III
(d) Only I and III/ kesâJeue I leLee III
12. If
3 + 2
a =
3 - 2
and
3 - 2
b =
3 + 2
then what is
the value of a
2
+ b
2
– ab ?
Ùeefo
3 + 2
a =
3 - 2
leLee
3 - 2
b =
3 + 2
nQ, lees a
2
+
b
2
– ab keâe ceeve keäÙee nw?
(a) 97 (b)
( )
2 3 2 +
(c)
( )
4 6 1 + (d) 98
13. If the difference between the roots of the
equation Ax
2
– Bx + C = 0 is 4, then which of
the following is TRUE ?
Ùeefo meceerkeâjCe Ax
2
– Bx + C = 0 kesâ cetueeW keâe Deblej
4 nw, lees efvecveefueefKele ceW mes keâewve mee melÙe nw?
(a) B
2
– 16 A
2
= 4AC + 4B
2
(b) B
2
– 10 A
2
= 4AC + 6A
2
(c) B
2
– 8A
2
= 4AC + 10A
2
(d) B
2
– 16 A
2
= 4AC + 8B
2
14. a and ß are the roots of quadratic equation. If
a + ß = 8 and a–ß = 2 5 , then which of the
following equation will have roots a
4
and ß
4
?
a leLee ß efÉIeele meceerkeâjCe kesâ cetue nQ~ Ùeefo a + ß = 8
leLee a–ß = 2 5 nQ, lees a
4
leLee ß
4
efvecveefueefKele ceW
mes efkeâme meceerkeâjCe kesâ cetue nQ?
(a) x
2
– 1522x + 14641 = 0
(b) x
2
– 1921x + 14641 = 0
(c) x
2
– 1764x + 14641 = 0
(d) x
2
– 2520x + 14641 = 0
15. If a and b are the roots of the equation Px
2
–
Qx + R = 0, then what is the value of (1/a
2
) +
(1/b
2
) + (a/b) + (b/a) ?
Ùeefo a leLee b meceerkeâjCe Px
2
– Qx + R = 0 kesâ
cetue nQ, lees (1/a
2
) + (1/b
2
) + (a/b) + (b/a) keâe
ceeve keäÙee nw?
(a)
( )( )
2
2
Q 2P 2R P
PR
- +
(b)
( )( )
2
2
Q 2PR R P
PR
- +
(c)
( )( )
2
2 2
Q 2R 2P R
P R
- +
(d)
( )( )
2
2 2
Q 2PR 2R 2P
P R
- +
16. If x
2
– 16x + 59 = 0, then what is the value of
(x–6)
2
+ [1/(x–6)
2
] ?
Ùeefo x
2
– 16x + 59 = 0, nw, lees (x–6)
2
+ [1/(x–6)
2
]
keâe ceeve keäÙee nw?
(a) 14 (b) 18
(c) 16 (d) 20
17. If A and B are the roots of the equation Ax
2
–
A
2
x + AB = 0, then what is the value of A and B
respectively ?
Ùeefo A leLee B meceerkeâjCe Ax
2
– A
2
x + AB = 0, kesâ
cetue nQ, lees ›eâceMe: A leLee B keâe ceeve keäÙee nw?
(a) 1, 0 (b) 1, 1
(c) 0, 2 (d) 0, 1
18. a and ß are the roots of the quadratic equation
x
2
– x–1 = 0. What is the value of a
8
+ ß
8
?
a leLee ß efÉIeele meceerkeâjCe x
2
– x–1 = 0 kesâ cetue nQ~
a
8
+ ß
8
keâe ceeve keäÙee nw?
(a) 47 (b) 54
(c) 59 (d) 68
19. If a + b + c = 9, ab + bc + ca = 26, a
3
+ b
3
= 91,
b
3
+ c
3
= 72 and c
3
+ a
3
= 35, then what is the
value of abc ?
Ùeefo a + b + c = 9, ab + bc + ca = 27, a
3
+ b
3
=
91, b
3
+ c
3
= 72 leLee c
3
+ a
3
= 35 nQ, lees abc keâe
ceeve keäÙee nw?
(a) 48 (b) 24
(c) 36 (d) 42
20. If x
3
– 4x
2
+ 19 = 6(x–1), then what is the value
of [x
2
+ (1/x – 4)] ?
Ùeefo x
3
– 4x
2
+ 19 = 6(x–1) nw, lees [x
2
+ (1/x – 4)]
keâe ceeve keäÙee nw?
(a) 3 (b) 5
(c) 6 (d) 8
21. Cost of 8 pencils, 5 pens and 3 erasers is Rs.
111. Cost of 9 pencils, 6 pens and 5 erasers is
Rs. 130. Cost of 16 pencils, 11 pens and 3
erasers is Rs. 221. What is the cost (in Rs.) of 39
pencils 26 pens and 13 erasers ?
8 heWefmeue, 5 keâuece leLee 3 jyeÌ[ keâe cetuÙe 111 ® nw~
9 heWefmeue, 6 keâuece leLee 5 jyeÌ[ keâe cetuÙe 130 ® nw~
16 heWefmeue, 11 keâuece leLee 3 jyeÌ[ keâe cetuÙe 221 ®
nw~ 39 heWefmeue, 26 keâuece leLee 13 jyeÌ[ keâe cetuÙe (®
ceW) keäÙee nw?
(a) 316 (b) 546
(c) 624 (d) 482
22. If 2x + 3y – 5z = 18, 3x + 2y + z = 29 and x + y +
3z = 17, then what is the value of xy + yz + zx ?
Ùeefo 2x + 3y – 5z = 18, 3x + 2y + z = 29 leLee x + y
+ 3z = 17, nQ, lees xy + yz + zx keâe ceeve keäÙee nw?
(a) 32 (b) 52
(c) 64 (d) 46
23. PQR is an equilateral triangle whose side is 10
cm. What is the value (in cm) of the inradius of
triangle PQR ?
PQR Skeâ meceyeeng ef$eYegpe nQ efpemekeâer Yegpee 10 mesceer.
nQ~ ef$eYegpe PQR keâer Deble: ef$epÙee keâe ceeve (mes.ceer. ceW)
keäÙee nw?
(a) 5/ 3 (b) 10/ 3
(c) 10/ 3 (d) 5/ 2
24. What is the area (in cm
2
) of the circumcircle of
a triangle whose sides are 6 cm, 8 cm and 10 cm
respectively ?
Skeâ ef$eYegpe efpemekeâer YegpeeSB ›eâceMe: 6 mes.ceer., 8 mesceer,
leLee 10 mes.ceer. nw, kesâ heefjJe=òe keâe #es$eHeâue (mes.ceer.
2
ceW)
keäÙee nw?
(a) 275/7 (b) 550/7
(c) 2200/7 (d) 1100/7
25. In the given figure, MNOP is a parallelogram.
PM is extended to Z. OZ intersects MN and PN
at Y and X respectively. If OX = 27 cm and XY
= 18 cm, then what is the length (in cm) of YZ ?
oer ieF& Deeke=âefle ceW, MNOP Skeâ meceeblej ÛelegYeg&pe nw~
PM keâes Z lekeâ yeÌ{eÙee ieÙee nw~ OZ, MN leLee PN
keâes ›eâceMe: Y leLee X hej ØeefleÛÚso keâjleer nw~ Ùeefo OX
= 27 mes.ceer. leLee XY = 18 mes.ceer. nQ, lees YZ keâer
uecyeeF& (mes.ceer. ceW) keäÙee nw?
(a) 21.4 (b) 22.5
(c) 23.8 (d) 24.5
26. ABCD is a trapezium in which AB is parallel to
CD and AB = 4 (CD). The diagonals of the
trapezium intersects at O. What is the ratio of
area of triangle DCO to the area of the triangle
ABO ?
ABCD Skeâ meceuecye nw efpemeceW AB, CD kesâ meceeblej nw
leLee AB = 4 (CD) nw~ meceuecye kesâ efJekeâCe& O hej
ØeefleÛÚsove keâjles nw~ ef$eYegpe DCO kesâ #es$eHeâue keâe
ef$eYegpe ABO kesâ #es$eHeâue mes keäÙee Devegheele nw?
(a) 1 : 4 (b) 1 : 2
(c) 1 : 8 (d) 1 : 16
27. In the given figure, ABC is an equilateral
triangle. Two circles of radius 4 cm and 12 cm
are inscribed in the triangle. What is the side
(in cm) of an equilateral triangle ?
oer ieF& Deeke=âefle ceW, ABC Skeâ meceyeeng ef$eYegpe nw~ 4
mes.ceer. leLee 12 mes.ceer. ef$epÙee Jeeues oes Je=òe ef$eYegpe
ceW Debefkeâle nw~ mecekeâesCe ef$eYegpe keâer Yegpee (mes.ceer. ceW)
keäÙee nw?
(a) 32/ 3 (b) 32 3
(c) 64/ 3 (d) 64 2
28. In the given figure, SX is tangent. SX = OX =
OR. If QX = 3 cm and PQ = 9 cm, then what is
the value (in cm) of OS ?
oer ieF& Deeke=âefle ceW, SX Skeâ mheMe& jsKee nw~ SX = OX
= OR nQ~ Ùeefo QX = 3 mes.ceer. leLee PQ = 9 mes.ceer. nQ,
lees OS keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 6 (b) 5
(c) 4 (d) 3
29. PAB and PCD are two secants to a circle. If PA
= 10 cm, AB = 12 cm and PC = 11 cm, then
what is the value (in cm) of PD ?
PAB leLee PCD Skeâ Je=le hej oes Úsove jsKeeSB nQ~ Ùeefo
PA = 10 mes.ceer., AB = 12 mes.ceer. leLee PC = 11 mes.ceer.
nes lees, PD keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 18 (b) 9
(c) 20 (d) 12
30. Triangle PQR is inscribed in a circle such that
P, Q and R lie on the circumference. If PQ is
the diameter of the circle and ?PQR = 40
0
,
then what is the value (in degrees) of ?QPR ?
Skeâ Je=òe ceW ef$eYegpe PQR Fme Øekeâej Debefkeâle nw, efkeâ P,
Q leLee R heefjefOe hej efmLele nw~ Ùeefo PQ Je=òe keâe JÙeeme
nw leLee ?PQR = 40
0
nw, lees ?QPR keâe ceeve (ef[«eer
ceW) keäÙee nw?
(a) 40 (b) 45
(c) 50 (d) 55
31. In the given figure, ?QRU = 72
0
, ? TRS = 15
0
and ?PSR = 95
0
, then what is the value (in
degrees) of ?PQR ?
oer ieF& Deeke=âefle ceW, ?QRU = 72
0
, ? TRS = 15
0
leLee ?PSR = 95
0
nQ, lees ?PQR keâe ceeve (ef[«eer
ceW) keäÙee nw?
(a) 85 (b) 95
(c) 75 (d) 90
32. What can be the maximum number of common
tangent which can be drawn to two non-
intersecting circles?
oes iewj–ØeefleÛÚsoer Je=òeeW ceW DeefOekeâlece efkeâleveer DevegmheMe&
jsKee KeeRÛeer pee mekeâleer nw?
(a) 2 (b) 4
(c) 3 (d) 6
Page 4
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 21-2-2018] [Time : 10 AM to 12 PM
1. If A = 1 – 10 + 3 – 12 + 5 – 14 + 7 + ....... upto 60
terms, then what is the value of A ?
Ùeefo A = 1 – 10 + 3 – 12 + 5 – 14 + 7 + ....... 60
heoeW lekeâ nQ, lees A keâe ceeve keäÙee nw?
(a) –360 (b) –310
(c) –240 (d) –270
2. How many natural numbers are there between
1000 to 2000, which when divided by 341 leaves
remainder 5 ?
1000 mes 2000 kesâ ceOÙe Ssmeer efkeâleveer Øeeke=âeflekeâ
mebKÙeeSB nQ efpevnW 341 mes efJeYeeefpele keâjves hej
Mes<eHeâue 5 yeÛelee nw?
(a) 3 (b) 2
(c) 4 (d) 1
3. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. ( ) ( ) ( ) ( ) 64 + 0.0064 + 0.81 + 0.0081 = 9.07
II. ( ) ( ) ( ) 0.010201 + 98.01 + 0.25 = 11.51
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
4. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve-mee/mes keâLeve melÙe nw/nQ?
I. (0.7)
2
+ (0.07)
2
+ (11.1)
2
> 123.8
II. (1.12)
2
+ (10.3)
2
+ (1.05)
2
> 108.3
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
5. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
1 1 1 1 12
+ + + ... + =
1× 3 3×5 5×7 11×13 13
II.
1 1 1 1 12
+ + + ... + =
1× 2 2× 3 3× 4 12×13 13
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
6. Which of the following statement(s) is/are
TRUE?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 3/71 < 5/91 < 7/99
II. 11/135 > 12/157 > 13/181
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
7. If 1 + (1/2) + (1/3) +....+ (1/20) = k, then what is
the value of (1/4) + (1/6) + (1/8) + ....+ (1/40) ?
Ùeefo 1 + (1/2) + (1/3) +....+ (1/20) = k nw, lees (1/4)
+ (1/6) + (1/8) + ....+ (1/40) keâe ceeve keäÙee nw?
(a) k/2 (b) 2k
(c) (k – 1)/2 (d) (k + 1)/2
8. If A = 2
32
, B = 2
31
+ 2
30
+ 2
29
+...+ 2
0
and C = 3
15
+ 3
14
+ 3
13
+ ....+ 3
0
, then which of the following
option is TRUE ?
Ùeefo A = 2
32
, B = 2
31
+ 2
30
+ 2
29
+...+ 2
0
leLee C =
3
15
+ 3
14
+ 3
13
+ ....+ 3
0
nw, lees efvecveefueefKele ceW mes
keâewve mee efJekeâuhe melÙe nw?
(a) C > B > A (b) C > A > B
(c) A > B > C (d) A > C > B
9. If x + y = 10 and xy = 4, then what is the value
of x
4
+ y
4
?
Ùeefo x + y = 10 leLee xy = 4 nQ, lees x
4
+ y
4
keâe ceeve
keäÙee nw?
(a) 8464 (b) 8432
(c) 7478 (d) 6218
10. M is the largest three digit number which when
divided by 6 and 5 leaves remainder 5 and 3
respectively. What will be the remainder when
M is divided by 11 ?
M leerve DebkeâeW keâer meyemes yeÌ[er mebKÙee nw efpemes, peye 6
leLee 5 mes efJeYeeefpele efkeâÙee peelee nw lees Mes<eHeâue ›eâceMe:
5 leLee 3 Deelee nw~ peye M keâes 11 mes efJeYeeefpele efkeâÙee
peeÙes lees Mes<eHeâue keäÙee nesiee?
(a) 1 (b) 2
(c) 3 (d) 4
11. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 5 + 5 > 7 + 3
II. 6 + 7 > 8 + 5
III. 3 + 9 > 6 + 6
(a) Only I/ kesâJeue I
(b) Only I and II/kesâJeue I leLee II
(c) Only II and III/kesâJeue II leLee III
(d) Only I and III/ kesâJeue I leLee III
12. If
3 + 2
a =
3 - 2
and
3 - 2
b =
3 + 2
then what is
the value of a
2
+ b
2
– ab ?
Ùeefo
3 + 2
a =
3 - 2
leLee
3 - 2
b =
3 + 2
nQ, lees a
2
+
b
2
– ab keâe ceeve keäÙee nw?
(a) 97 (b)
( )
2 3 2 +
(c)
( )
4 6 1 + (d) 98
13. If the difference between the roots of the
equation Ax
2
– Bx + C = 0 is 4, then which of
the following is TRUE ?
Ùeefo meceerkeâjCe Ax
2
– Bx + C = 0 kesâ cetueeW keâe Deblej
4 nw, lees efvecveefueefKele ceW mes keâewve mee melÙe nw?
(a) B
2
– 16 A
2
= 4AC + 4B
2
(b) B
2
– 10 A
2
= 4AC + 6A
2
(c) B
2
– 8A
2
= 4AC + 10A
2
(d) B
2
– 16 A
2
= 4AC + 8B
2
14. a and ß are the roots of quadratic equation. If
a + ß = 8 and a–ß = 2 5 , then which of the
following equation will have roots a
4
and ß
4
?
a leLee ß efÉIeele meceerkeâjCe kesâ cetue nQ~ Ùeefo a + ß = 8
leLee a–ß = 2 5 nQ, lees a
4
leLee ß
4
efvecveefueefKele ceW
mes efkeâme meceerkeâjCe kesâ cetue nQ?
(a) x
2
– 1522x + 14641 = 0
(b) x
2
– 1921x + 14641 = 0
(c) x
2
– 1764x + 14641 = 0
(d) x
2
– 2520x + 14641 = 0
15. If a and b are the roots of the equation Px
2
–
Qx + R = 0, then what is the value of (1/a
2
) +
(1/b
2
) + (a/b) + (b/a) ?
Ùeefo a leLee b meceerkeâjCe Px
2
– Qx + R = 0 kesâ
cetue nQ, lees (1/a
2
) + (1/b
2
) + (a/b) + (b/a) keâe
ceeve keäÙee nw?
(a)
( )( )
2
2
Q 2P 2R P
PR
- +
(b)
( )( )
2
2
Q 2PR R P
PR
- +
(c)
( )( )
2
2 2
Q 2R 2P R
P R
- +
(d)
( )( )
2
2 2
Q 2PR 2R 2P
P R
- +
16. If x
2
– 16x + 59 = 0, then what is the value of
(x–6)
2
+ [1/(x–6)
2
] ?
Ùeefo x
2
– 16x + 59 = 0, nw, lees (x–6)
2
+ [1/(x–6)
2
]
keâe ceeve keäÙee nw?
(a) 14 (b) 18
(c) 16 (d) 20
17. If A and B are the roots of the equation Ax
2
–
A
2
x + AB = 0, then what is the value of A and B
respectively ?
Ùeefo A leLee B meceerkeâjCe Ax
2
– A
2
x + AB = 0, kesâ
cetue nQ, lees ›eâceMe: A leLee B keâe ceeve keäÙee nw?
(a) 1, 0 (b) 1, 1
(c) 0, 2 (d) 0, 1
18. a and ß are the roots of the quadratic equation
x
2
– x–1 = 0. What is the value of a
8
+ ß
8
?
a leLee ß efÉIeele meceerkeâjCe x
2
– x–1 = 0 kesâ cetue nQ~
a
8
+ ß
8
keâe ceeve keäÙee nw?
(a) 47 (b) 54
(c) 59 (d) 68
19. If a + b + c = 9, ab + bc + ca = 26, a
3
+ b
3
= 91,
b
3
+ c
3
= 72 and c
3
+ a
3
= 35, then what is the
value of abc ?
Ùeefo a + b + c = 9, ab + bc + ca = 27, a
3
+ b
3
=
91, b
3
+ c
3
= 72 leLee c
3
+ a
3
= 35 nQ, lees abc keâe
ceeve keäÙee nw?
(a) 48 (b) 24
(c) 36 (d) 42
20. If x
3
– 4x
2
+ 19 = 6(x–1), then what is the value
of [x
2
+ (1/x – 4)] ?
Ùeefo x
3
– 4x
2
+ 19 = 6(x–1) nw, lees [x
2
+ (1/x – 4)]
keâe ceeve keäÙee nw?
(a) 3 (b) 5
(c) 6 (d) 8
21. Cost of 8 pencils, 5 pens and 3 erasers is Rs.
111. Cost of 9 pencils, 6 pens and 5 erasers is
Rs. 130. Cost of 16 pencils, 11 pens and 3
erasers is Rs. 221. What is the cost (in Rs.) of 39
pencils 26 pens and 13 erasers ?
8 heWefmeue, 5 keâuece leLee 3 jyeÌ[ keâe cetuÙe 111 ® nw~
9 heWefmeue, 6 keâuece leLee 5 jyeÌ[ keâe cetuÙe 130 ® nw~
16 heWefmeue, 11 keâuece leLee 3 jyeÌ[ keâe cetuÙe 221 ®
nw~ 39 heWefmeue, 26 keâuece leLee 13 jyeÌ[ keâe cetuÙe (®
ceW) keäÙee nw?
(a) 316 (b) 546
(c) 624 (d) 482
22. If 2x + 3y – 5z = 18, 3x + 2y + z = 29 and x + y +
3z = 17, then what is the value of xy + yz + zx ?
Ùeefo 2x + 3y – 5z = 18, 3x + 2y + z = 29 leLee x + y
+ 3z = 17, nQ, lees xy + yz + zx keâe ceeve keäÙee nw?
(a) 32 (b) 52
(c) 64 (d) 46
23. PQR is an equilateral triangle whose side is 10
cm. What is the value (in cm) of the inradius of
triangle PQR ?
PQR Skeâ meceyeeng ef$eYegpe nQ efpemekeâer Yegpee 10 mesceer.
nQ~ ef$eYegpe PQR keâer Deble: ef$epÙee keâe ceeve (mes.ceer. ceW)
keäÙee nw?
(a) 5/ 3 (b) 10/ 3
(c) 10/ 3 (d) 5/ 2
24. What is the area (in cm
2
) of the circumcircle of
a triangle whose sides are 6 cm, 8 cm and 10 cm
respectively ?
Skeâ ef$eYegpe efpemekeâer YegpeeSB ›eâceMe: 6 mes.ceer., 8 mesceer,
leLee 10 mes.ceer. nw, kesâ heefjJe=òe keâe #es$eHeâue (mes.ceer.
2
ceW)
keäÙee nw?
(a) 275/7 (b) 550/7
(c) 2200/7 (d) 1100/7
25. In the given figure, MNOP is a parallelogram.
PM is extended to Z. OZ intersects MN and PN
at Y and X respectively. If OX = 27 cm and XY
= 18 cm, then what is the length (in cm) of YZ ?
oer ieF& Deeke=âefle ceW, MNOP Skeâ meceeblej ÛelegYeg&pe nw~
PM keâes Z lekeâ yeÌ{eÙee ieÙee nw~ OZ, MN leLee PN
keâes ›eâceMe: Y leLee X hej ØeefleÛÚso keâjleer nw~ Ùeefo OX
= 27 mes.ceer. leLee XY = 18 mes.ceer. nQ, lees YZ keâer
uecyeeF& (mes.ceer. ceW) keäÙee nw?
(a) 21.4 (b) 22.5
(c) 23.8 (d) 24.5
26. ABCD is a trapezium in which AB is parallel to
CD and AB = 4 (CD). The diagonals of the
trapezium intersects at O. What is the ratio of
area of triangle DCO to the area of the triangle
ABO ?
ABCD Skeâ meceuecye nw efpemeceW AB, CD kesâ meceeblej nw
leLee AB = 4 (CD) nw~ meceuecye kesâ efJekeâCe& O hej
ØeefleÛÚsove keâjles nw~ ef$eYegpe DCO kesâ #es$eHeâue keâe
ef$eYegpe ABO kesâ #es$eHeâue mes keäÙee Devegheele nw?
(a) 1 : 4 (b) 1 : 2
(c) 1 : 8 (d) 1 : 16
27. In the given figure, ABC is an equilateral
triangle. Two circles of radius 4 cm and 12 cm
are inscribed in the triangle. What is the side
(in cm) of an equilateral triangle ?
oer ieF& Deeke=âefle ceW, ABC Skeâ meceyeeng ef$eYegpe nw~ 4
mes.ceer. leLee 12 mes.ceer. ef$epÙee Jeeues oes Je=òe ef$eYegpe
ceW Debefkeâle nw~ mecekeâesCe ef$eYegpe keâer Yegpee (mes.ceer. ceW)
keäÙee nw?
(a) 32/ 3 (b) 32 3
(c) 64/ 3 (d) 64 2
28. In the given figure, SX is tangent. SX = OX =
OR. If QX = 3 cm and PQ = 9 cm, then what is
the value (in cm) of OS ?
oer ieF& Deeke=âefle ceW, SX Skeâ mheMe& jsKee nw~ SX = OX
= OR nQ~ Ùeefo QX = 3 mes.ceer. leLee PQ = 9 mes.ceer. nQ,
lees OS keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 6 (b) 5
(c) 4 (d) 3
29. PAB and PCD are two secants to a circle. If PA
= 10 cm, AB = 12 cm and PC = 11 cm, then
what is the value (in cm) of PD ?
PAB leLee PCD Skeâ Je=le hej oes Úsove jsKeeSB nQ~ Ùeefo
PA = 10 mes.ceer., AB = 12 mes.ceer. leLee PC = 11 mes.ceer.
nes lees, PD keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 18 (b) 9
(c) 20 (d) 12
30. Triangle PQR is inscribed in a circle such that
P, Q and R lie on the circumference. If PQ is
the diameter of the circle and ?PQR = 40
0
,
then what is the value (in degrees) of ?QPR ?
Skeâ Je=òe ceW ef$eYegpe PQR Fme Øekeâej Debefkeâle nw, efkeâ P,
Q leLee R heefjefOe hej efmLele nw~ Ùeefo PQ Je=òe keâe JÙeeme
nw leLee ?PQR = 40
0
nw, lees ?QPR keâe ceeve (ef[«eer
ceW) keäÙee nw?
(a) 40 (b) 45
(c) 50 (d) 55
31. In the given figure, ?QRU = 72
0
, ? TRS = 15
0
and ?PSR = 95
0
, then what is the value (in
degrees) of ?PQR ?
oer ieF& Deeke=âefle ceW, ?QRU = 72
0
, ? TRS = 15
0
leLee ?PSR = 95
0
nQ, lees ?PQR keâe ceeve (ef[«eer
ceW) keäÙee nw?
(a) 85 (b) 95
(c) 75 (d) 90
32. What can be the maximum number of common
tangent which can be drawn to two non-
intersecting circles?
oes iewj–ØeefleÛÚsoer Je=òeeW ceW DeefOekeâlece efkeâleveer DevegmheMe&
jsKee KeeRÛeer pee mekeâleer nw?
(a) 2 (b) 4
(c) 3 (d) 6
33. Triangle PQR is inscribed in the circle whose
radius is 14 cm. If PQ is the diameter of the
circle and PR = 10 cm, then what is the area of
the triangle PQR ?
ef$eYegpe PQR Je=òe efpemekeâer ef$epÙee 14 mes.ceer. nw, ceW
Debefkeâle nw~ Ùeefo PQ Je=òe keâe JÙeeme nw leLee PR = 10
mes.ceer. nw, lees ef$eYegpe PQR keâe #es$eHeâue keäÙee nw?
(a) 196 (b) 30 19
(c) 40 17 (d) 35 21
34. PQR is a right angled triangle in which PQ =
QR. If the hypotenuse of the triangle is 20 cm,
then what is the area (in cm
2
) of the triangle
PQR ?
PQR Skeâ mecekeâesCe ef$eYegpe nw efpemeceW PQ = QR nw~
Ùeefo ef$eYegpe keâe keâCe& 20 mes.ceer. nw, lees ef$eYegpe PQR
keâe keäÙee #es$eHeâue (mes.ceer.
2
ceW) ceW keäÙee nw?
(a) 100 2 (b) 100
(c) 50 2 (d) 50
35. PQRS is a square whose side is 20 cm. By
joining opposite vertices of PQRS are get four
triangles. What is the sum of the perimeters
ofthe four triangles ?
PQRS Skeâ Jeie& nw efpemekeâer Yegpee 20 mes.ceer. nw~ PQRS
kesâ efJehejerle Meer<eeX keâes efceueeves hej Ûeej ef$eYegpe Øeehle nesles
nQ~ Ûeejes ef$eYegpeeW kesâ heefjceeheeW keâe Ùeesie keäÙee nw?
(a) 40 2 (b) 80 2 80 +
(c) 40 2 40 + (d) 40 2 80 +
36. If ABCDEF is a regular hexagon, then what is
the value (in degrees) of ?ADB ?
Ùeefo ABCDEF Skeâ mece <ešdYegpe nw, lees ?ADB keâe
ceeve (ef[«eer ceW) keäÙee nw?
(a) 15 (b) 30
(c) 45 (d) 60
37. ABCD is square and CDE is an equilateral
triangle outside the square. What is the value
(in degrees) of ?BEC ?
ABCD Skeâ Jeie& nw leLee CDE Jeie& kesâ yeenj Skeâ
meceyeeng ef$eYegpe nw~ ?BEC keâe ceeve (ef[«eer ceW) keäÙee nw?
(a) 15 (b) 30
(c) 45 (d) 60
38. There is a circular garden of radius 21 metres.
A path of width 3.5 metres is constructed just
outside the garden. What is the area (in
metres
2
) of the path ?
21 ceeršj ef$epÙee Jeeuee Skeâ Je=òeekeâej GÅeeve nw~ GÅeeve
kesâ "erkeâ yeenj 3.5 ceeršj ÛeewÌ[eF& Jeeues Skeâ heLe keâe
efvecee&Ce efkeâÙee ieÙee nw~ heLe keâe #es$eHeâue (ceeršj
2
ceW)
keäÙee nw?
(a) 50.05 (b) 57.56
(c) 52.12 (d) 56.07
39. In the given figure, PQRS is a square whose
side is 8 cm. PQS and QPR are two quadrants.
A circle is placed touching both the quadrants
and the square as shown in the figure. What is
the are (in cm
2
) of the circle ?
oer ieF& Deeke=âefle ceW, PQRS Skeâ Jeie& nw efpemekeâer Yegpee 8
mes.ceer. nw~ PQS leLee QPR Je=òe kesâ oes ÛelegLe& Yeeie nQ~
Skeâ Je=òe, Je=òe kesâ oesveeW ÛelegLe& YeeieeW leLee Jeie& keâes mheMe&
keâj jne nw pewmee efkeâ Deeke=âefle ceW oMee&Ùee ieÙee nw~ Je=òe keâe
#es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a) 13/17 (b) 11/14
(c) 19/31 (d) 15/19
40. The base of a prism is in the shape of an
equilateral triangle. If the perimeter of the base
is 18 cm and the height of the prism is 20 cm,
then what is the volume (in cm
3
) of the prism ?
Skeâ efØepce keâe DeeOeej meceyeeng ef$eYegpe kesâ Deekeâej ceW nw~
Ùeefo DeeOeej keâer heefjefOe 18 mes.ceer. nw leLee efØepce keâer
TBÛeeF& 20 mes.ceer. nw, lees efØepce keâe DeeÙeleve (mes.ceer.
3
ceW)
keäÙee nw?
(a) 60 3 (b) 30 6
(c) 60 2 (d) 120 3
41. The height of a cone is 24 cm and the area of
the base is 154 cm
2
. What is the curved surface
area (in cm
2
) of the cone ?
Skeâ Mebkegâ keâer TBÛeeF& 24 mes.ceer. nw leLee DeeOeej keâe
#es$eHeâue 154 mes.ceer.
2
nw~ Mebkegâ kesâ Je›eâ he=<"erÙe #es$eHeâue
(mes.ceer.
2
ceW) keäÙee nw?
(a) 484 (b) 550
(c) 525 (d) 515
42. A right circular solid cylinder has radius of
base 7 cm and height is 28 cm. It is melted to
form a cuboid such that the ratio of its side is
2:3:6. What is the total surface area (in cm
2
) of
cuboid ?
Skeâ mece Je=òeekeâej "esme yesueve kesâ DeeOeej keâer ef$epÙee 7
mes.ceer. leLee TBÛeeF& 28 mes.ceer. nw~ Fmes efheIeueekeâj Skeâ
IeveeYe Fme Øekeâej yeveeÙee peelee nw keâer Gmekeâer Yegpee keâe
Devegheele 2:3:6 nw~ IeveeYe keâe kegâue he=<"erÙe #es$eHeâue
(mes.ceer.
2
ceW) keäÙee nw?
(a)
3
2156
3
(b)
3
2156
9
(c)
3
2148
3
(d)
3
2048
3
43. A right circular cylinder is formed A = sum of
total surface area and the area of the two bases.
B = the curved surface area of this cylinder. If
A : B = 3 : 2 and the volume of cylinder is 4312
cm
3
, then what is the sum of area (in cm
2
) of
the two bases of this cylinder ?
Skeâ mece Je=òeekeâej yesueve yeveeÙee peelee nw~ A = kegâue
he=<"erÙe #es$eHeâue leLee oes DeeOeejeW kesâ #es$eHeâue keâe Ùeesie~
Page 5
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 21-2-2018] [Time : 10 AM to 12 PM
1. If A = 1 – 10 + 3 – 12 + 5 – 14 + 7 + ....... upto 60
terms, then what is the value of A ?
Ùeefo A = 1 – 10 + 3 – 12 + 5 – 14 + 7 + ....... 60
heoeW lekeâ nQ, lees A keâe ceeve keäÙee nw?
(a) –360 (b) –310
(c) –240 (d) –270
2. How many natural numbers are there between
1000 to 2000, which when divided by 341 leaves
remainder 5 ?
1000 mes 2000 kesâ ceOÙe Ssmeer efkeâleveer Øeeke=âeflekeâ
mebKÙeeSB nQ efpevnW 341 mes efJeYeeefpele keâjves hej
Mes<eHeâue 5 yeÛelee nw?
(a) 3 (b) 2
(c) 4 (d) 1
3. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. ( ) ( ) ( ) ( ) 64 + 0.0064 + 0.81 + 0.0081 = 9.07
II. ( ) ( ) ( ) 0.010201 + 98.01 + 0.25 = 11.51
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
4. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve-mee/mes keâLeve melÙe nw/nQ?
I. (0.7)
2
+ (0.07)
2
+ (11.1)
2
> 123.8
II. (1.12)
2
+ (10.3)
2
+ (1.05)
2
> 108.3
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
5. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I.
1 1 1 1 12
+ + + ... + =
1× 3 3×5 5×7 11×13 13
II.
1 1 1 1 12
+ + + ... + =
1× 2 2× 3 3× 4 12×13 13
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
6. Which of the following statement(s) is/are
TRUE?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 3/71 < 5/91 < 7/99
II. 11/135 > 12/157 > 13/181
(a) Only I/kesâJeue I
(b) Only II/kesâJeue II
(c) Both I and II/I leLee II oesveeW
(d) Neither I nor II/ve lees I ve ner II
7. If 1 + (1/2) + (1/3) +....+ (1/20) = k, then what is
the value of (1/4) + (1/6) + (1/8) + ....+ (1/40) ?
Ùeefo 1 + (1/2) + (1/3) +....+ (1/20) = k nw, lees (1/4)
+ (1/6) + (1/8) + ....+ (1/40) keâe ceeve keäÙee nw?
(a) k/2 (b) 2k
(c) (k – 1)/2 (d) (k + 1)/2
8. If A = 2
32
, B = 2
31
+ 2
30
+ 2
29
+...+ 2
0
and C = 3
15
+ 3
14
+ 3
13
+ ....+ 3
0
, then which of the following
option is TRUE ?
Ùeefo A = 2
32
, B = 2
31
+ 2
30
+ 2
29
+...+ 2
0
leLee C =
3
15
+ 3
14
+ 3
13
+ ....+ 3
0
nw, lees efvecveefueefKele ceW mes
keâewve mee efJekeâuhe melÙe nw?
(a) C > B > A (b) C > A > B
(c) A > B > C (d) A > C > B
9. If x + y = 10 and xy = 4, then what is the value
of x
4
+ y
4
?
Ùeefo x + y = 10 leLee xy = 4 nQ, lees x
4
+ y
4
keâe ceeve
keäÙee nw?
(a) 8464 (b) 8432
(c) 7478 (d) 6218
10. M is the largest three digit number which when
divided by 6 and 5 leaves remainder 5 and 3
respectively. What will be the remainder when
M is divided by 11 ?
M leerve DebkeâeW keâer meyemes yeÌ[er mebKÙee nw efpemes, peye 6
leLee 5 mes efJeYeeefpele efkeâÙee peelee nw lees Mes<eHeâue ›eâceMe:
5 leLee 3 Deelee nw~ peye M keâes 11 mes efJeYeeefpele efkeâÙee
peeÙes lees Mes<eHeâue keäÙee nesiee?
(a) 1 (b) 2
(c) 3 (d) 4
11. Which of the following statement(s) is/are
TRUE ?
efvecveefueefKele ceW mes keâewve mee/mes keâLeve melÙe nw/nQ?
I. 5 + 5 > 7 + 3
II. 6 + 7 > 8 + 5
III. 3 + 9 > 6 + 6
(a) Only I/ kesâJeue I
(b) Only I and II/kesâJeue I leLee II
(c) Only II and III/kesâJeue II leLee III
(d) Only I and III/ kesâJeue I leLee III
12. If
3 + 2
a =
3 - 2
and
3 - 2
b =
3 + 2
then what is
the value of a
2
+ b
2
– ab ?
Ùeefo
3 + 2
a =
3 - 2
leLee
3 - 2
b =
3 + 2
nQ, lees a
2
+
b
2
– ab keâe ceeve keäÙee nw?
(a) 97 (b)
( )
2 3 2 +
(c)
( )
4 6 1 + (d) 98
13. If the difference between the roots of the
equation Ax
2
– Bx + C = 0 is 4, then which of
the following is TRUE ?
Ùeefo meceerkeâjCe Ax
2
– Bx + C = 0 kesâ cetueeW keâe Deblej
4 nw, lees efvecveefueefKele ceW mes keâewve mee melÙe nw?
(a) B
2
– 16 A
2
= 4AC + 4B
2
(b) B
2
– 10 A
2
= 4AC + 6A
2
(c) B
2
– 8A
2
= 4AC + 10A
2
(d) B
2
– 16 A
2
= 4AC + 8B
2
14. a and ß are the roots of quadratic equation. If
a + ß = 8 and a–ß = 2 5 , then which of the
following equation will have roots a
4
and ß
4
?
a leLee ß efÉIeele meceerkeâjCe kesâ cetue nQ~ Ùeefo a + ß = 8
leLee a–ß = 2 5 nQ, lees a
4
leLee ß
4
efvecveefueefKele ceW
mes efkeâme meceerkeâjCe kesâ cetue nQ?
(a) x
2
– 1522x + 14641 = 0
(b) x
2
– 1921x + 14641 = 0
(c) x
2
– 1764x + 14641 = 0
(d) x
2
– 2520x + 14641 = 0
15. If a and b are the roots of the equation Px
2
–
Qx + R = 0, then what is the value of (1/a
2
) +
(1/b
2
) + (a/b) + (b/a) ?
Ùeefo a leLee b meceerkeâjCe Px
2
– Qx + R = 0 kesâ
cetue nQ, lees (1/a
2
) + (1/b
2
) + (a/b) + (b/a) keâe
ceeve keäÙee nw?
(a)
( )( )
2
2
Q 2P 2R P
PR
- +
(b)
( )( )
2
2
Q 2PR R P
PR
- +
(c)
( )( )
2
2 2
Q 2R 2P R
P R
- +
(d)
( )( )
2
2 2
Q 2PR 2R 2P
P R
- +
16. If x
2
– 16x + 59 = 0, then what is the value of
(x–6)
2
+ [1/(x–6)
2
] ?
Ùeefo x
2
– 16x + 59 = 0, nw, lees (x–6)
2
+ [1/(x–6)
2
]
keâe ceeve keäÙee nw?
(a) 14 (b) 18
(c) 16 (d) 20
17. If A and B are the roots of the equation Ax
2
–
A
2
x + AB = 0, then what is the value of A and B
respectively ?
Ùeefo A leLee B meceerkeâjCe Ax
2
– A
2
x + AB = 0, kesâ
cetue nQ, lees ›eâceMe: A leLee B keâe ceeve keäÙee nw?
(a) 1, 0 (b) 1, 1
(c) 0, 2 (d) 0, 1
18. a and ß are the roots of the quadratic equation
x
2
– x–1 = 0. What is the value of a
8
+ ß
8
?
a leLee ß efÉIeele meceerkeâjCe x
2
– x–1 = 0 kesâ cetue nQ~
a
8
+ ß
8
keâe ceeve keäÙee nw?
(a) 47 (b) 54
(c) 59 (d) 68
19. If a + b + c = 9, ab + bc + ca = 26, a
3
+ b
3
= 91,
b
3
+ c
3
= 72 and c
3
+ a
3
= 35, then what is the
value of abc ?
Ùeefo a + b + c = 9, ab + bc + ca = 27, a
3
+ b
3
=
91, b
3
+ c
3
= 72 leLee c
3
+ a
3
= 35 nQ, lees abc keâe
ceeve keäÙee nw?
(a) 48 (b) 24
(c) 36 (d) 42
20. If x
3
– 4x
2
+ 19 = 6(x–1), then what is the value
of [x
2
+ (1/x – 4)] ?
Ùeefo x
3
– 4x
2
+ 19 = 6(x–1) nw, lees [x
2
+ (1/x – 4)]
keâe ceeve keäÙee nw?
(a) 3 (b) 5
(c) 6 (d) 8
21. Cost of 8 pencils, 5 pens and 3 erasers is Rs.
111. Cost of 9 pencils, 6 pens and 5 erasers is
Rs. 130. Cost of 16 pencils, 11 pens and 3
erasers is Rs. 221. What is the cost (in Rs.) of 39
pencils 26 pens and 13 erasers ?
8 heWefmeue, 5 keâuece leLee 3 jyeÌ[ keâe cetuÙe 111 ® nw~
9 heWefmeue, 6 keâuece leLee 5 jyeÌ[ keâe cetuÙe 130 ® nw~
16 heWefmeue, 11 keâuece leLee 3 jyeÌ[ keâe cetuÙe 221 ®
nw~ 39 heWefmeue, 26 keâuece leLee 13 jyeÌ[ keâe cetuÙe (®
ceW) keäÙee nw?
(a) 316 (b) 546
(c) 624 (d) 482
22. If 2x + 3y – 5z = 18, 3x + 2y + z = 29 and x + y +
3z = 17, then what is the value of xy + yz + zx ?
Ùeefo 2x + 3y – 5z = 18, 3x + 2y + z = 29 leLee x + y
+ 3z = 17, nQ, lees xy + yz + zx keâe ceeve keäÙee nw?
(a) 32 (b) 52
(c) 64 (d) 46
23. PQR is an equilateral triangle whose side is 10
cm. What is the value (in cm) of the inradius of
triangle PQR ?
PQR Skeâ meceyeeng ef$eYegpe nQ efpemekeâer Yegpee 10 mesceer.
nQ~ ef$eYegpe PQR keâer Deble: ef$epÙee keâe ceeve (mes.ceer. ceW)
keäÙee nw?
(a) 5/ 3 (b) 10/ 3
(c) 10/ 3 (d) 5/ 2
24. What is the area (in cm
2
) of the circumcircle of
a triangle whose sides are 6 cm, 8 cm and 10 cm
respectively ?
Skeâ ef$eYegpe efpemekeâer YegpeeSB ›eâceMe: 6 mes.ceer., 8 mesceer,
leLee 10 mes.ceer. nw, kesâ heefjJe=òe keâe #es$eHeâue (mes.ceer.
2
ceW)
keäÙee nw?
(a) 275/7 (b) 550/7
(c) 2200/7 (d) 1100/7
25. In the given figure, MNOP is a parallelogram.
PM is extended to Z. OZ intersects MN and PN
at Y and X respectively. If OX = 27 cm and XY
= 18 cm, then what is the length (in cm) of YZ ?
oer ieF& Deeke=âefle ceW, MNOP Skeâ meceeblej ÛelegYeg&pe nw~
PM keâes Z lekeâ yeÌ{eÙee ieÙee nw~ OZ, MN leLee PN
keâes ›eâceMe: Y leLee X hej ØeefleÛÚso keâjleer nw~ Ùeefo OX
= 27 mes.ceer. leLee XY = 18 mes.ceer. nQ, lees YZ keâer
uecyeeF& (mes.ceer. ceW) keäÙee nw?
(a) 21.4 (b) 22.5
(c) 23.8 (d) 24.5
26. ABCD is a trapezium in which AB is parallel to
CD and AB = 4 (CD). The diagonals of the
trapezium intersects at O. What is the ratio of
area of triangle DCO to the area of the triangle
ABO ?
ABCD Skeâ meceuecye nw efpemeceW AB, CD kesâ meceeblej nw
leLee AB = 4 (CD) nw~ meceuecye kesâ efJekeâCe& O hej
ØeefleÛÚsove keâjles nw~ ef$eYegpe DCO kesâ #es$eHeâue keâe
ef$eYegpe ABO kesâ #es$eHeâue mes keäÙee Devegheele nw?
(a) 1 : 4 (b) 1 : 2
(c) 1 : 8 (d) 1 : 16
27. In the given figure, ABC is an equilateral
triangle. Two circles of radius 4 cm and 12 cm
are inscribed in the triangle. What is the side
(in cm) of an equilateral triangle ?
oer ieF& Deeke=âefle ceW, ABC Skeâ meceyeeng ef$eYegpe nw~ 4
mes.ceer. leLee 12 mes.ceer. ef$epÙee Jeeues oes Je=òe ef$eYegpe
ceW Debefkeâle nw~ mecekeâesCe ef$eYegpe keâer Yegpee (mes.ceer. ceW)
keäÙee nw?
(a) 32/ 3 (b) 32 3
(c) 64/ 3 (d) 64 2
28. In the given figure, SX is tangent. SX = OX =
OR. If QX = 3 cm and PQ = 9 cm, then what is
the value (in cm) of OS ?
oer ieF& Deeke=âefle ceW, SX Skeâ mheMe& jsKee nw~ SX = OX
= OR nQ~ Ùeefo QX = 3 mes.ceer. leLee PQ = 9 mes.ceer. nQ,
lees OS keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 6 (b) 5
(c) 4 (d) 3
29. PAB and PCD are two secants to a circle. If PA
= 10 cm, AB = 12 cm and PC = 11 cm, then
what is the value (in cm) of PD ?
PAB leLee PCD Skeâ Je=le hej oes Úsove jsKeeSB nQ~ Ùeefo
PA = 10 mes.ceer., AB = 12 mes.ceer. leLee PC = 11 mes.ceer.
nes lees, PD keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 18 (b) 9
(c) 20 (d) 12
30. Triangle PQR is inscribed in a circle such that
P, Q and R lie on the circumference. If PQ is
the diameter of the circle and ?PQR = 40
0
,
then what is the value (in degrees) of ?QPR ?
Skeâ Je=òe ceW ef$eYegpe PQR Fme Øekeâej Debefkeâle nw, efkeâ P,
Q leLee R heefjefOe hej efmLele nw~ Ùeefo PQ Je=òe keâe JÙeeme
nw leLee ?PQR = 40
0
nw, lees ?QPR keâe ceeve (ef[«eer
ceW) keäÙee nw?
(a) 40 (b) 45
(c) 50 (d) 55
31. In the given figure, ?QRU = 72
0
, ? TRS = 15
0
and ?PSR = 95
0
, then what is the value (in
degrees) of ?PQR ?
oer ieF& Deeke=âefle ceW, ?QRU = 72
0
, ? TRS = 15
0
leLee ?PSR = 95
0
nQ, lees ?PQR keâe ceeve (ef[«eer
ceW) keäÙee nw?
(a) 85 (b) 95
(c) 75 (d) 90
32. What can be the maximum number of common
tangent which can be drawn to two non-
intersecting circles?
oes iewj–ØeefleÛÚsoer Je=òeeW ceW DeefOekeâlece efkeâleveer DevegmheMe&
jsKee KeeRÛeer pee mekeâleer nw?
(a) 2 (b) 4
(c) 3 (d) 6
33. Triangle PQR is inscribed in the circle whose
radius is 14 cm. If PQ is the diameter of the
circle and PR = 10 cm, then what is the area of
the triangle PQR ?
ef$eYegpe PQR Je=òe efpemekeâer ef$epÙee 14 mes.ceer. nw, ceW
Debefkeâle nw~ Ùeefo PQ Je=òe keâe JÙeeme nw leLee PR = 10
mes.ceer. nw, lees ef$eYegpe PQR keâe #es$eHeâue keäÙee nw?
(a) 196 (b) 30 19
(c) 40 17 (d) 35 21
34. PQR is a right angled triangle in which PQ =
QR. If the hypotenuse of the triangle is 20 cm,
then what is the area (in cm
2
) of the triangle
PQR ?
PQR Skeâ mecekeâesCe ef$eYegpe nw efpemeceW PQ = QR nw~
Ùeefo ef$eYegpe keâe keâCe& 20 mes.ceer. nw, lees ef$eYegpe PQR
keâe keäÙee #es$eHeâue (mes.ceer.
2
ceW) ceW keäÙee nw?
(a) 100 2 (b) 100
(c) 50 2 (d) 50
35. PQRS is a square whose side is 20 cm. By
joining opposite vertices of PQRS are get four
triangles. What is the sum of the perimeters
ofthe four triangles ?
PQRS Skeâ Jeie& nw efpemekeâer Yegpee 20 mes.ceer. nw~ PQRS
kesâ efJehejerle Meer<eeX keâes efceueeves hej Ûeej ef$eYegpe Øeehle nesles
nQ~ Ûeejes ef$eYegpeeW kesâ heefjceeheeW keâe Ùeesie keäÙee nw?
(a) 40 2 (b) 80 2 80 +
(c) 40 2 40 + (d) 40 2 80 +
36. If ABCDEF is a regular hexagon, then what is
the value (in degrees) of ?ADB ?
Ùeefo ABCDEF Skeâ mece <ešdYegpe nw, lees ?ADB keâe
ceeve (ef[«eer ceW) keäÙee nw?
(a) 15 (b) 30
(c) 45 (d) 60
37. ABCD is square and CDE is an equilateral
triangle outside the square. What is the value
(in degrees) of ?BEC ?
ABCD Skeâ Jeie& nw leLee CDE Jeie& kesâ yeenj Skeâ
meceyeeng ef$eYegpe nw~ ?BEC keâe ceeve (ef[«eer ceW) keäÙee nw?
(a) 15 (b) 30
(c) 45 (d) 60
38. There is a circular garden of radius 21 metres.
A path of width 3.5 metres is constructed just
outside the garden. What is the area (in
metres
2
) of the path ?
21 ceeršj ef$epÙee Jeeuee Skeâ Je=òeekeâej GÅeeve nw~ GÅeeve
kesâ "erkeâ yeenj 3.5 ceeršj ÛeewÌ[eF& Jeeues Skeâ heLe keâe
efvecee&Ce efkeâÙee ieÙee nw~ heLe keâe #es$eHeâue (ceeršj
2
ceW)
keäÙee nw?
(a) 50.05 (b) 57.56
(c) 52.12 (d) 56.07
39. In the given figure, PQRS is a square whose
side is 8 cm. PQS and QPR are two quadrants.
A circle is placed touching both the quadrants
and the square as shown in the figure. What is
the are (in cm
2
) of the circle ?
oer ieF& Deeke=âefle ceW, PQRS Skeâ Jeie& nw efpemekeâer Yegpee 8
mes.ceer. nw~ PQS leLee QPR Je=òe kesâ oes ÛelegLe& Yeeie nQ~
Skeâ Je=òe, Je=òe kesâ oesveeW ÛelegLe& YeeieeW leLee Jeie& keâes mheMe&
keâj jne nw pewmee efkeâ Deeke=âefle ceW oMee&Ùee ieÙee nw~ Je=òe keâe
#es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a) 13/17 (b) 11/14
(c) 19/31 (d) 15/19
40. The base of a prism is in the shape of an
equilateral triangle. If the perimeter of the base
is 18 cm and the height of the prism is 20 cm,
then what is the volume (in cm
3
) of the prism ?
Skeâ efØepce keâe DeeOeej meceyeeng ef$eYegpe kesâ Deekeâej ceW nw~
Ùeefo DeeOeej keâer heefjefOe 18 mes.ceer. nw leLee efØepce keâer
TBÛeeF& 20 mes.ceer. nw, lees efØepce keâe DeeÙeleve (mes.ceer.
3
ceW)
keäÙee nw?
(a) 60 3 (b) 30 6
(c) 60 2 (d) 120 3
41. The height of a cone is 24 cm and the area of
the base is 154 cm
2
. What is the curved surface
area (in cm
2
) of the cone ?
Skeâ Mebkegâ keâer TBÛeeF& 24 mes.ceer. nw leLee DeeOeej keâe
#es$eHeâue 154 mes.ceer.
2
nw~ Mebkegâ kesâ Je›eâ he=<"erÙe #es$eHeâue
(mes.ceer.
2
ceW) keäÙee nw?
(a) 484 (b) 550
(c) 525 (d) 515
42. A right circular solid cylinder has radius of
base 7 cm and height is 28 cm. It is melted to
form a cuboid such that the ratio of its side is
2:3:6. What is the total surface area (in cm
2
) of
cuboid ?
Skeâ mece Je=òeekeâej "esme yesueve kesâ DeeOeej keâer ef$epÙee 7
mes.ceer. leLee TBÛeeF& 28 mes.ceer. nw~ Fmes efheIeueekeâj Skeâ
IeveeYe Fme Øekeâej yeveeÙee peelee nw keâer Gmekeâer Yegpee keâe
Devegheele 2:3:6 nw~ IeveeYe keâe kegâue he=<"erÙe #es$eHeâue
(mes.ceer.
2
ceW) keäÙee nw?
(a)
3
2156
3
(b)
3
2156
9
(c)
3
2148
3
(d)
3
2048
3
43. A right circular cylinder is formed A = sum of
total surface area and the area of the two bases.
B = the curved surface area of this cylinder. If
A : B = 3 : 2 and the volume of cylinder is 4312
cm
3
, then what is the sum of area (in cm
2
) of
the two bases of this cylinder ?
Skeâ mece Je=òeekeâej yesueve yeveeÙee peelee nw~ A = kegâue
he=<"erÙe #es$eHeâue leLee oes DeeOeejeW kesâ #es$eHeâue keâe Ùeesie~
B = Fme yesueve keâe Je›eâ he=<"erÙe #es$eHeâue~ Ùeefo A : B =
3 : 2 leLee yesueve keâe DeeÙeleve 4312 mes.ceer.3 nw, lees Fme
yesueve kesâ oesveeW DeeOeejeW kesâ #es$eHeâue (mes.ceer.
2
ceW) keâe
Ùeesie keäÙee nw?
(a) 154 (b) 308
(c) 462 (d) 616
44. A solid sphere has a radius 21 cm. It is melted
to form a cube. 20% material is wasted in this
process. The cube is melted to form
hemisphere. In this process 20% material is
wasted. The hemisphere is melted to form two
spheres of equal radius. 20% material was also
wasted in this process. What is the radius (in
cm) of each new sphere ?
Skeâ "esme ieesues keâer ef$epÙee 21 mes.ceer. nw~ Fmes efheIeueekeâj
Skeâ Ieve yeveeÙee peelee nw~ Fme Øeef›eâÙee ceW 20³ meece«eer
JÙeLe& nes peeleer nw~ Ieve keâes efheIeueekeâj Skeâ DeOe&ieesuee
yeveeÙee peelee nw~ Fme Øeef›eâÙee ceW 20³ meece«eer JÙeLe& nes
peeleer nw~ DeOe&ieesues keâes efheIeueekeâj oes meceeve ef$epÙee
Jeeues oes ieesues yeveeÙes peeles nQ~ Fme Øeef›eâÙee ceW Yeer 20³
meece«eer Yeer JÙeLe& nes ieF& Leer~ ØelÙeskeâ veS ieesues keâer
ef$epÙee (mes.ceer. ceW) keäÙee nw?
(a)
( )
3
4.2 2 (b)
( )
3
2.1 2
(c)
( )
3
2.1 4 (d)
( )
3
4.2 4
45. A solid hemisphere has radius 14 cm. It is
melted to form a cylinder such that the ratio of
its curved surface area and total surface area is
2:3. What is the radius (in cm) of its base ?
Skeâ "esme DeOe&ieesues keâer ef$epÙee 14 mes.ceer. nw~ Fmes
efheIeueekeâj Skeâ yesueve Fme Øekeâej yeveeÙee peelee nw efkeâ
Gmekesâ Je›eâ he=<"erÙe #es$eHeâue leLee kegâue he=‰erÙe #es$eheâue
keâe Devegheele 2:3 nw~ Fmekesâ DeeOeej keâer ef$epÙee (mes.ceer.
ceW) keäÙee nw?
(a)
3
10
3
(b)
3
14
3
(c)
3
7
3
(d)
3
21
3
46. A cuboid has dimensions 8 cm × 10 cm × 12 cm.
It is cut into small cubes of side 2 cm. What is
the percentage increase in the total surface
area ?
Skeâ IeveeYe keâe DeeÙeece 8 mes.ceer. × 10 mes.ceer. × 12
mes.ceer. nw~ Fmes 2 mes.ceer. Yegpee Jeeues Úesšs IeveeW ceW keâeše
peelee nw~ kegâue he=<"erÙe #es$eHeâue ceW efkeâleves ØeefleMele keâer
Je=efæ ngF&?
(a) 286.2 (b) 314.32
(c) 250.64 (d) 386.5
47. A pyramid has a square base. The side of
square is 12 cm and height of pyramid is 21 cm.
The pyramid is cut into 3 parts by 2 cuts
parallel to its base. The cuts are at height of
7cm and 14cm respectively from the base.
What is the difference (in cm
3
) in the volume of
top most and bottom most part?
Skeâ efhejeefce[ keâe DeeOeej Skeâ Jeie& nw~ Jeie& keâer Yegpee 12
mes.ceer. leLee efhejeefce[ keâer TBÛeeF& 21 mes.ceer. nw~ efhejeefce[
keâes Gmekesâ DeeOeej kesâ meceeblej 2 keâšeJeeW mes 3 YeeieeW ceW
keâeše peelee nw~ keâšeJe DeeOeej mes ›eâceMe: 7 mes.ceer. leLee
14 mes.ceer. keâer TBÛeeF& hej nw~ meyemes Thej leLee meyemes veerÛes
kesâ Yeeie kesâ DeeÙeleve keâe Deblej (mes.ceer.
3
ceW) keäÙee nw?
(a) 872 (b) 944
(c) 786 (d) 918
48. What is the value of {(sin 4x + sin 4y) [(tan (2x
– 2y)]}/(sin 4x–sin 4y) ?
{(sin 4x + sin 4y) [(tan (2x – 2y)]}/(sin 4x–sin
4y) keâe ceeve keäÙee nw?
(a) tan 2 (2x + 2y) (b) tan
2
(c) cot (x–y) (d) tan (2x + 2y)
49. What is the value of (32 cos
6
x – 48 cos
4
x + 18
cos
2
x–1)/ [4 sin x cosx sin (60 –x) cos (60–x) sin
(60 + x) cos (60 + x) ?
(32 cos
6
x – 48 cos
4
x + 18 cos
2
x–1)/ [4 sin x cosx
sin (60 –x) cos (60–x) sin (60 + x) cos (60 + x)
keâe ceeve keäÙee nw?
(a) 4 tan 6x (b) 4 cot 6x
(c) 8 cot 6x (d) 8 tan 6x
50. What is the value of [2 cot(p – A)/2]/[1 + tan
2
(2p–A)/2] ?
[2 cot(p – A)/2]/[1 + tan
2
(2p–A)/2] keâe ceeve keäÙee
nw?
(a) 2 sin
2
A/2 (b) cos A
(c) sin A (d) 2 cos
2
A/2
51. If tan ? + sec? = (x–2)/(x+2), then what is the
value of cos ? ?
Ùeefo tan ? + sec? = (x–2)/(x+2) nw, lees cos ? keâe
ceeve keäÙee nw?
(a) (x
2
– 1)/ (x
2
+ 1)
(b) (2x
2
– 4)/ (2x
2
+ 4)
(c) (x
2
– 4)/(x
2
+ 4)
(d) (x
2
– 2)/(x
2
+ 2)
52. What is the value of (cos 40
0
– cos 140
0
)/(sin 80
0
+ sin 20
0
) ?
(cos 40
0
– cos 140
0
)/(sin 80
0
+ sin 20
0
) keâe ceeve
keäÙee nw?
(a) 2 3 (b) 2/ 3
(c) 1/ 3 (d) 3
53. What is the value of [1–tan (90–?) + sec (90 –
?)]/[tan (90–?) + sec (90 –?) + 1] ?
[1–tan (90–?) + sec (90 – ?)]/[tan (90–?) + sec
(90 –?) + 1] keâe ceeve keäÙee nw?
(a) cot (?/2) (b) tan (?/2)
(c) sin ? (d) cos ?
54. What is the value of [sin (90–A) + cos (180–
2A)]/[cos (90–2A) + sin (180–A]?
[sin (90–A) + cos (180–2A)]/[cos (90–2A) + sin
(180–A] keâe ceeve keäÙee nw?
(a) sin (A/2) cosA (b) cot (A/2)
(c) tan (A/2) (d) sin A cos (A/2)
Read More