Page 1
Answers & Solutions
for
JEE (Main)-2023 (Online) Phase-2
(Mathematics, Physics and Chemistry)
12/04/2023
Morning
Time : 3 hrs. M.M. : 300
IMPORTANT INSTRUCTIONS:
(1) The test is of 3 hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300.
(3) There are three parts in the question paper consisting of Mathematics, Physics and Chemistry
having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct
answer. Each question carries 4 marks for correct answer and –1 mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out
of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks
for correct answer and –1 mark for wrong answer. For Section-B, the answer should be
rounded off to the nearest integer.
Page 2
Answers & Solutions
for
JEE (Main)-2023 (Online) Phase-2
(Mathematics, Physics and Chemistry)
12/04/2023
Morning
Time : 3 hrs. M.M. : 300
IMPORTANT INSTRUCTIONS:
(1) The test is of 3 hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300.
(3) There are three parts in the question paper consisting of Mathematics, Physics and Chemistry
having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct
answer. Each question carries 4 marks for correct answer and –1 mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out
of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks
for correct answer and –1 mark for wrong answer. For Section-B, the answer should be
rounded off to the nearest integer.
MATHEMATICS
SECTION - A
Multiple Choice Questions: This section contains 20
multiple choice questions. Each question has 4 choices
(1), (2), (3) and (4), out of which ONLY ONE is correct.
Choose the correct answer:
1. The number of five-digit numbers, greater than
40000 and divisible by 5, which can be formed
using the digits 0, 1, 3, 5, 7 and 9 without repetition,
is equal to
(1) 132 (2) 120
(3) 72 (4) 96
Answer (2)
Sol. Case I : Numbers start with 5
Case II :
Case III :
Total numbers = 120
2. Let a, b, c be three distinct real numbers, none
equal to one. If the vectors
ˆ ˆ ˆ ˆ ˆ ˆ
, + + + + ai j k i bj k
and
ˆ ˆ ˆ
++ i j ck are coplanar, then
1 1 1
1 1 1
++
- - - a b c
is equal to
(1) 2 (2) –1
(3) –2 (4) 1
Answer (4)
Sol.
11
1 1 0
11
a
b
c
=
1 1 0
0 1 1 0
11
ab
bc
c
--
- - =
R1 ? R1 – R2
R2 ? R2 – R3
? (a – 1) [c(b – 1) – (1 – c)] + 1 [(1 – b) (1 – c)] = 0
? c(a – 1) (b – 1) – (a – 1) (1 – c) + (1 – b) (1 – c) = 0
?
1 1 1
1
1 1 1 a b c
+ + =
- - -
3. Let <a n> be a sequence such that
( )( )
2
12
3
...
12
+
+ + + =
++
n
nn
a a a
nn
. If
10
1 2 3
1
1
28 ...
m
k
k
p p p p
a
=
=
?
, where p1, p2,…p m are
the first m prime numbers, then m is equal to
(1) 5
(2) 8
(3) 6
(4) 7
Answer (3)
Sol.
( )( )
( ) ( )
( )
2
2
1 3 1
3
1 2 1
n
nn
nn
a
n n n n
- + -
+
=-
+ + +
( )( )
4
12 n n n
=
++
10 10
11
11
( 1)( 2)
4
k
kk
k k k
a
==
= + +
??
=
10
1
1
( 1)( 2)( 3) ( 1) ( 1)( 2)
16
k
k k k k k k k k
=
+ + + - - + +
?
( ) ( )
1
1·2 · 3 · 4. 0 2·3·4 ·5 1·2·3·4
16
? - + -
?
( ) 10·11·12·13 – 9·10·11·12 ?
?
? ?
1
10·11·12·13
16
==
?
10
1
1 28 5 11 3 13
28
2
k
k
a
=
? ? ? ?
=
?
= 2·3·5·7·11·13
? 6 m =
Page 3
Answers & Solutions
for
JEE (Main)-2023 (Online) Phase-2
(Mathematics, Physics and Chemistry)
12/04/2023
Morning
Time : 3 hrs. M.M. : 300
IMPORTANT INSTRUCTIONS:
(1) The test is of 3 hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300.
(3) There are three parts in the question paper consisting of Mathematics, Physics and Chemistry
having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct
answer. Each question carries 4 marks for correct answer and –1 mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out
of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks
for correct answer and –1 mark for wrong answer. For Section-B, the answer should be
rounded off to the nearest integer.
MATHEMATICS
SECTION - A
Multiple Choice Questions: This section contains 20
multiple choice questions. Each question has 4 choices
(1), (2), (3) and (4), out of which ONLY ONE is correct.
Choose the correct answer:
1. The number of five-digit numbers, greater than
40000 and divisible by 5, which can be formed
using the digits 0, 1, 3, 5, 7 and 9 without repetition,
is equal to
(1) 132 (2) 120
(3) 72 (4) 96
Answer (2)
Sol. Case I : Numbers start with 5
Case II :
Case III :
Total numbers = 120
2. Let a, b, c be three distinct real numbers, none
equal to one. If the vectors
ˆ ˆ ˆ ˆ ˆ ˆ
, + + + + ai j k i bj k
and
ˆ ˆ ˆ
++ i j ck are coplanar, then
1 1 1
1 1 1
++
- - - a b c
is equal to
(1) 2 (2) –1
(3) –2 (4) 1
Answer (4)
Sol.
11
1 1 0
11
a
b
c
=
1 1 0
0 1 1 0
11
ab
bc
c
--
- - =
R1 ? R1 – R2
R2 ? R2 – R3
? (a – 1) [c(b – 1) – (1 – c)] + 1 [(1 – b) (1 – c)] = 0
? c(a – 1) (b – 1) – (a – 1) (1 – c) + (1 – b) (1 – c) = 0
?
1 1 1
1
1 1 1 a b c
+ + =
- - -
3. Let <a n> be a sequence such that
( )( )
2
12
3
...
12
+
+ + + =
++
n
nn
a a a
nn
. If
10
1 2 3
1
1
28 ...
m
k
k
p p p p
a
=
=
?
, where p1, p2,…p m are
the first m prime numbers, then m is equal to
(1) 5
(2) 8
(3) 6
(4) 7
Answer (3)
Sol.
( )( )
( ) ( )
( )
2
2
1 3 1
3
1 2 1
n
nn
nn
a
n n n n
- + -
+
=-
+ + +
( )( )
4
12 n n n
=
++
10 10
11
11
( 1)( 2)
4
k
kk
k k k
a
==
= + +
??
=
10
1
1
( 1)( 2)( 3) ( 1) ( 1)( 2)
16
k
k k k k k k k k
=
+ + + - - + +
?
( ) ( )
1
1·2 · 3 · 4. 0 2·3·4 ·5 1·2·3·4
16
? - + -
?
( ) 10·11·12·13 – 9·10·11·12 ?
?
? ?
1
10·11·12·13
16
==
?
10
1
1 28 5 11 3 13
28
2
k
k
a
=
? ? ? ?
=
?
= 2·3·5·7·11·13
? 6 m =
4. Let
1
1
51
0 1
A
??
??
=
??
??
??
. If
12
–1 –1
??
=
??
??
B
–1 –2
11
A
??
=
??
??
, then
the sum of all the elements of the matrix
50
1 =
?
n
n
B is
equal to
(1) 75
(2) 125
(3) 50 (4) 100
Answer (4)
Sol.
( ) ( )
1 2 –1 –2 1 0
–1 –1 1 1 0 1
MN
? ? ? ? ? ?
=
? ? ? ? ? ?
? ? ? ? ? ?
? MN = I = NM
B = MAN
B
n
= (MAN)
n
= (MAN) (MAN) …
= (MA
2
N) MAN
= MA
n
N
Now
1
10 0
51
01
00
A I E
??
??
??
= + = +
??
??
??
??
??
E
2
= 0
2
2
0
()
n n n
A I E I nE C E ? = + = + +
= I + nE
1
51
01
n ??
??
=
??
??
??
So,
1
51 51
1
51 51
nn
nn
B MA N
nn
??
+
??
?? ==
-
??
-
??
??
50
1
50·51 50·51
50
2·51 2·51 75 25
– 50·51 50·51 –25 25
50 –
2·51 2·51
n
n
B
=
??
+
??
??
??
==
??
??
??
??
??
?
? Sum = 100
5. If
1 1 0
1 1 1 1023
...
1 2 10
-
+ + + + =
+
n n n n
nn
C C C C
nn
then n is equal to
(1) 9 (2) 8
(3) 7 (4) 6
Answer (1)
Sol.
1
1
0
1 1023 1
1 10 1
n
n n n
r r r
r
n
C C C
rr
+
+
=
+ ??
= ? =
??
++
??
?
1
1
0
1 1023
1 10
n
n
r
r
C
n
+
+
=
?=
+
?
1 1 1
1 2 1
1 1023
...
1 10
n n n
n
C C C
n
+ + +
+
??
? + + + =
??
+
1 10
2 1 1023 2 1
1 10 10
n
n
+
--
? = =
+
? n + 1 = 10
? n = 9
6. The area of the region enclosed by the curve
3
yx = and its tangent at the point (–1, –1) is
(1)
19
4
(2)
23
4
(3)
31
4
(4)
27
4
Answer (4)
Sol.
Given y = x
3
…(i)
2
3
dy
x
dx
?=
(–1, –1)
3
dy
dx
??
=
??
??
P(–1, –1)
Q(2, 8)
Page 4
Answers & Solutions
for
JEE (Main)-2023 (Online) Phase-2
(Mathematics, Physics and Chemistry)
12/04/2023
Morning
Time : 3 hrs. M.M. : 300
IMPORTANT INSTRUCTIONS:
(1) The test is of 3 hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300.
(3) There are three parts in the question paper consisting of Mathematics, Physics and Chemistry
having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct
answer. Each question carries 4 marks for correct answer and –1 mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out
of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks
for correct answer and –1 mark for wrong answer. For Section-B, the answer should be
rounded off to the nearest integer.
MATHEMATICS
SECTION - A
Multiple Choice Questions: This section contains 20
multiple choice questions. Each question has 4 choices
(1), (2), (3) and (4), out of which ONLY ONE is correct.
Choose the correct answer:
1. The number of five-digit numbers, greater than
40000 and divisible by 5, which can be formed
using the digits 0, 1, 3, 5, 7 and 9 without repetition,
is equal to
(1) 132 (2) 120
(3) 72 (4) 96
Answer (2)
Sol. Case I : Numbers start with 5
Case II :
Case III :
Total numbers = 120
2. Let a, b, c be three distinct real numbers, none
equal to one. If the vectors
ˆ ˆ ˆ ˆ ˆ ˆ
, + + + + ai j k i bj k
and
ˆ ˆ ˆ
++ i j ck are coplanar, then
1 1 1
1 1 1
++
- - - a b c
is equal to
(1) 2 (2) –1
(3) –2 (4) 1
Answer (4)
Sol.
11
1 1 0
11
a
b
c
=
1 1 0
0 1 1 0
11
ab
bc
c
--
- - =
R1 ? R1 – R2
R2 ? R2 – R3
? (a – 1) [c(b – 1) – (1 – c)] + 1 [(1 – b) (1 – c)] = 0
? c(a – 1) (b – 1) – (a – 1) (1 – c) + (1 – b) (1 – c) = 0
?
1 1 1
1
1 1 1 a b c
+ + =
- - -
3. Let <a n> be a sequence such that
( )( )
2
12
3
...
12
+
+ + + =
++
n
nn
a a a
nn
. If
10
1 2 3
1
1
28 ...
m
k
k
p p p p
a
=
=
?
, where p1, p2,…p m are
the first m prime numbers, then m is equal to
(1) 5
(2) 8
(3) 6
(4) 7
Answer (3)
Sol.
( )( )
( ) ( )
( )
2
2
1 3 1
3
1 2 1
n
nn
nn
a
n n n n
- + -
+
=-
+ + +
( )( )
4
12 n n n
=
++
10 10
11
11
( 1)( 2)
4
k
kk
k k k
a
==
= + +
??
=
10
1
1
( 1)( 2)( 3) ( 1) ( 1)( 2)
16
k
k k k k k k k k
=
+ + + - - + +
?
( ) ( )
1
1·2 · 3 · 4. 0 2·3·4 ·5 1·2·3·4
16
? - + -
?
( ) 10·11·12·13 – 9·10·11·12 ?
?
? ?
1
10·11·12·13
16
==
?
10
1
1 28 5 11 3 13
28
2
k
k
a
=
? ? ? ?
=
?
= 2·3·5·7·11·13
? 6 m =
4. Let
1
1
51
0 1
A
??
??
=
??
??
??
. If
12
–1 –1
??
=
??
??
B
–1 –2
11
A
??
=
??
??
, then
the sum of all the elements of the matrix
50
1 =
?
n
n
B is
equal to
(1) 75
(2) 125
(3) 50 (4) 100
Answer (4)
Sol.
( ) ( )
1 2 –1 –2 1 0
–1 –1 1 1 0 1
MN
? ? ? ? ? ?
=
? ? ? ? ? ?
? ? ? ? ? ?
? MN = I = NM
B = MAN
B
n
= (MAN)
n
= (MAN) (MAN) …
= (MA
2
N) MAN
= MA
n
N
Now
1
10 0
51
01
00
A I E
??
??
??
= + = +
??
??
??
??
??
E
2
= 0
2
2
0
()
n n n
A I E I nE C E ? = + = + +
= I + nE
1
51
01
n ??
??
=
??
??
??
So,
1
51 51
1
51 51
nn
nn
B MA N
nn
??
+
??
?? ==
-
??
-
??
??
50
1
50·51 50·51
50
2·51 2·51 75 25
– 50·51 50·51 –25 25
50 –
2·51 2·51
n
n
B
=
??
+
??
??
??
==
??
??
??
??
??
?
? Sum = 100
5. If
1 1 0
1 1 1 1023
...
1 2 10
-
+ + + + =
+
n n n n
nn
C C C C
nn
then n is equal to
(1) 9 (2) 8
(3) 7 (4) 6
Answer (1)
Sol.
1
1
0
1 1023 1
1 10 1
n
n n n
r r r
r
n
C C C
rr
+
+
=
+ ??
= ? =
??
++
??
?
1
1
0
1 1023
1 10
n
n
r
r
C
n
+
+
=
?=
+
?
1 1 1
1 2 1
1 1023
...
1 10
n n n
n
C C C
n
+ + +
+
??
? + + + =
??
+
1 10
2 1 1023 2 1
1 10 10
n
n
+
--
? = =
+
? n + 1 = 10
? n = 9
6. The area of the region enclosed by the curve
3
yx = and its tangent at the point (–1, –1) is
(1)
19
4
(2)
23
4
(3)
31
4
(4)
27
4
Answer (4)
Sol.
Given y = x
3
…(i)
2
3
dy
x
dx
?=
(–1, –1)
3
dy
dx
??
=
??
??
P(–1, –1)
Q(2, 8)
Equation of tangent at (–1, –1)
(y + 1) = 3(x + 1)
y = 3x + 2 …(ii)
Solving (i) and (ii)
x
3
= 3x + 2
Q(2, 8)
Required area
( )
2
3
–1
3 2 – x x dx =+
?
31
(4 1) 2(2 1) (16 1)
24
= - + + - -
27
4
=
7. If the total maximum value of the function
2
sin
3
( ) ,
2sin
x
e
fx
x
??
=??
??
??
0,
2
x
? ??
?
??
??
, is ,
k
e
then
8
8
8
5
kk
k
e
e
??
++
??
??
is equal to
(1)
3 6 11
e e e ++
(2)
5 6 11
e e e ++
(3)
3 6 10
e e e ++
(4)
3 5 11
eee ++
Answer (1)
Sol. ( )
2
sin
3
2sin
x
e
fx
x
??
=
??
??
??
( ) ( )
'
2
2
3
2sin cos ln
2sin
1 2sin 3 1
sin cos
2
3 sin
e
xx
x
f x f x
xe
xx
e x
?? ??
?+ ?? ??
??
??
??
=
??
?
??
? - ?
??
??
( )
3
sin2 ln sin cos 0
2sin
e
f x x x x
x
?? ??
= - = ?? ??
??
??
?? ??
Sin 2x = 0 (not possible)
31
ln
2sin 2
e
x
??
=+
??
??
??
31
2sin 2
e
e
x
=+
3
sin
2
x =
( )
11
17
3
8
8
8
max
c
f e k e
e
= = ? =
8
8
8 3 6 11
5
kk
k e e e
e
e
??
+ + = + +
??
??
8. Let , ?? be the roots of the quadratic equation
2
6 3 0 xx + + = . Then
23 23 14 14
15 15 10 10
? + ? + ? + ?
? + ? + ? + ?
is
equal to
(1) 81
(2) 9
(3) 72
(4) 729
Answer (2)
Sol.
23 23 14 14
15 15 10 10
? + ? + ? + ?
? + ? + ? + ?
Let a n = ?
n
+ ?
n
23 14
15 10
aa
aa
+
=
+
66
2
x
- ? -
=
1
6
2
i -? ??
=
??
??
1
3
2
i -? ??
=
??
??
3
4
3
i
e
?
?=
x x
3
– 3 – 2 = 0
–1
–1
? = 2
Page 5
Answers & Solutions
for
JEE (Main)-2023 (Online) Phase-2
(Mathematics, Physics and Chemistry)
12/04/2023
Morning
Time : 3 hrs. M.M. : 300
IMPORTANT INSTRUCTIONS:
(1) The test is of 3 hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300.
(3) There are three parts in the question paper consisting of Mathematics, Physics and Chemistry
having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct
answer. Each question carries 4 marks for correct answer and –1 mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out
of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks
for correct answer and –1 mark for wrong answer. For Section-B, the answer should be
rounded off to the nearest integer.
MATHEMATICS
SECTION - A
Multiple Choice Questions: This section contains 20
multiple choice questions. Each question has 4 choices
(1), (2), (3) and (4), out of which ONLY ONE is correct.
Choose the correct answer:
1. The number of five-digit numbers, greater than
40000 and divisible by 5, which can be formed
using the digits 0, 1, 3, 5, 7 and 9 without repetition,
is equal to
(1) 132 (2) 120
(3) 72 (4) 96
Answer (2)
Sol. Case I : Numbers start with 5
Case II :
Case III :
Total numbers = 120
2. Let a, b, c be three distinct real numbers, none
equal to one. If the vectors
ˆ ˆ ˆ ˆ ˆ ˆ
, + + + + ai j k i bj k
and
ˆ ˆ ˆ
++ i j ck are coplanar, then
1 1 1
1 1 1
++
- - - a b c
is equal to
(1) 2 (2) –1
(3) –2 (4) 1
Answer (4)
Sol.
11
1 1 0
11
a
b
c
=
1 1 0
0 1 1 0
11
ab
bc
c
--
- - =
R1 ? R1 – R2
R2 ? R2 – R3
? (a – 1) [c(b – 1) – (1 – c)] + 1 [(1 – b) (1 – c)] = 0
? c(a – 1) (b – 1) – (a – 1) (1 – c) + (1 – b) (1 – c) = 0
?
1 1 1
1
1 1 1 a b c
+ + =
- - -
3. Let <a n> be a sequence such that
( )( )
2
12
3
...
12
+
+ + + =
++
n
nn
a a a
nn
. If
10
1 2 3
1
1
28 ...
m
k
k
p p p p
a
=
=
?
, where p1, p2,…p m are
the first m prime numbers, then m is equal to
(1) 5
(2) 8
(3) 6
(4) 7
Answer (3)
Sol.
( )( )
( ) ( )
( )
2
2
1 3 1
3
1 2 1
n
nn
nn
a
n n n n
- + -
+
=-
+ + +
( )( )
4
12 n n n
=
++
10 10
11
11
( 1)( 2)
4
k
kk
k k k
a
==
= + +
??
=
10
1
1
( 1)( 2)( 3) ( 1) ( 1)( 2)
16
k
k k k k k k k k
=
+ + + - - + +
?
( ) ( )
1
1·2 · 3 · 4. 0 2·3·4 ·5 1·2·3·4
16
? - + -
?
( ) 10·11·12·13 – 9·10·11·12 ?
?
? ?
1
10·11·12·13
16
==
?
10
1
1 28 5 11 3 13
28
2
k
k
a
=
? ? ? ?
=
?
= 2·3·5·7·11·13
? 6 m =
4. Let
1
1
51
0 1
A
??
??
=
??
??
??
. If
12
–1 –1
??
=
??
??
B
–1 –2
11
A
??
=
??
??
, then
the sum of all the elements of the matrix
50
1 =
?
n
n
B is
equal to
(1) 75
(2) 125
(3) 50 (4) 100
Answer (4)
Sol.
( ) ( )
1 2 –1 –2 1 0
–1 –1 1 1 0 1
MN
? ? ? ? ? ?
=
? ? ? ? ? ?
? ? ? ? ? ?
? MN = I = NM
B = MAN
B
n
= (MAN)
n
= (MAN) (MAN) …
= (MA
2
N) MAN
= MA
n
N
Now
1
10 0
51
01
00
A I E
??
??
??
= + = +
??
??
??
??
??
E
2
= 0
2
2
0
()
n n n
A I E I nE C E ? = + = + +
= I + nE
1
51
01
n ??
??
=
??
??
??
So,
1
51 51
1
51 51
nn
nn
B MA N
nn
??
+
??
?? ==
-
??
-
??
??
50
1
50·51 50·51
50
2·51 2·51 75 25
– 50·51 50·51 –25 25
50 –
2·51 2·51
n
n
B
=
??
+
??
??
??
==
??
??
??
??
??
?
? Sum = 100
5. If
1 1 0
1 1 1 1023
...
1 2 10
-
+ + + + =
+
n n n n
nn
C C C C
nn
then n is equal to
(1) 9 (2) 8
(3) 7 (4) 6
Answer (1)
Sol.
1
1
0
1 1023 1
1 10 1
n
n n n
r r r
r
n
C C C
rr
+
+
=
+ ??
= ? =
??
++
??
?
1
1
0
1 1023
1 10
n
n
r
r
C
n
+
+
=
?=
+
?
1 1 1
1 2 1
1 1023
...
1 10
n n n
n
C C C
n
+ + +
+
??
? + + + =
??
+
1 10
2 1 1023 2 1
1 10 10
n
n
+
--
? = =
+
? n + 1 = 10
? n = 9
6. The area of the region enclosed by the curve
3
yx = and its tangent at the point (–1, –1) is
(1)
19
4
(2)
23
4
(3)
31
4
(4)
27
4
Answer (4)
Sol.
Given y = x
3
…(i)
2
3
dy
x
dx
?=
(–1, –1)
3
dy
dx
??
=
??
??
P(–1, –1)
Q(2, 8)
Equation of tangent at (–1, –1)
(y + 1) = 3(x + 1)
y = 3x + 2 …(ii)
Solving (i) and (ii)
x
3
= 3x + 2
Q(2, 8)
Required area
( )
2
3
–1
3 2 – x x dx =+
?
31
(4 1) 2(2 1) (16 1)
24
= - + + - -
27
4
=
7. If the total maximum value of the function
2
sin
3
( ) ,
2sin
x
e
fx
x
??
=??
??
??
0,
2
x
? ??
?
??
??
, is ,
k
e
then
8
8
8
5
kk
k
e
e
??
++
??
??
is equal to
(1)
3 6 11
e e e ++
(2)
5 6 11
e e e ++
(3)
3 6 10
e e e ++
(4)
3 5 11
eee ++
Answer (1)
Sol. ( )
2
sin
3
2sin
x
e
fx
x
??
=
??
??
??
( ) ( )
'
2
2
3
2sin cos ln
2sin
1 2sin 3 1
sin cos
2
3 sin
e
xx
x
f x f x
xe
xx
e x
?? ??
?+ ?? ??
??
??
??
=
??
?
??
? - ?
??
??
( )
3
sin2 ln sin cos 0
2sin
e
f x x x x
x
?? ??
= - = ?? ??
??
??
?? ??
Sin 2x = 0 (not possible)
31
ln
2sin 2
e
x
??
=+
??
??
??
31
2sin 2
e
e
x
=+
3
sin
2
x =
( )
11
17
3
8
8
8
max
c
f e k e
e
= = ? =
8
8
8 3 6 11
5
kk
k e e e
e
e
??
+ + = + +
??
??
8. Let , ?? be the roots of the quadratic equation
2
6 3 0 xx + + = . Then
23 23 14 14
15 15 10 10
? + ? + ? + ?
? + ? + ? + ?
is
equal to
(1) 81
(2) 9
(3) 72
(4) 729
Answer (2)
Sol.
23 23 14 14
15 15 10 10
? + ? + ? + ?
? + ? + ? + ?
Let a n = ?
n
+ ?
n
23 14
15 10
aa
aa
+
=
+
66
2
x
- ? -
=
1
6
2
i -? ??
=
??
??
1
3
2
i -? ??
=
??
??
3
4
3
i
e
?
?=
x x
3
– 3 – 2 = 0
–1
–1
? = 2
5
4
3
i
e
?
?=
23 23 14 14
15 15 10 10
? + ? + ? + ?
? + ? + ? + ?
( )
( )
35
23 23
44
9
35
14 14
44
35
15 15
44
5
35
10 10
44
3
9
3
ii
ii
ii
ii
ee
ee
ee
ee
??
??
??
??
??
??
??
? ? ?
??
??
??
??
??
+
??
??
??
??
??
?? ??
?? ??
++
?? ??
??
??
=
??
??
??
??
+
??
??
?? ??
??
??
??
??
++
??
??
??
??
??
??
( )
( )
9
5
11
30
2
9
11
30
2
ii
ii
?? +-+ ??
+
?? ??
??
??
=?
??
+-+ ??
+
??
??
?? ??
= 81
9. Let the lines
1
54
:
3 1 2
x y z
l
+ + - ?
==
-
and
2
: 3 2 2 0 l x y z + + - = 3 2 13 x y z = - + - be
coplanar. If the point ( , , ) P a b c on
1
l is nearest to
the point ( 4, 3, 2), Q-- then | | | | | | a b c ++ is equal
to
(1) 12 (2) 14
(3) 8 (4) 10
Answer (4)
Sol.
22
for : 3 2 1
1 3 2
i j k
Pn =
-
( ) ( ) ( ) 7 5 11 i j k = - + -
Let R lies on l2
Let z = 0
? 3x + 2y = 2
x – 3y = 13
? 11y = –39 + 2 = –37
?
37
11
y
-
=
? x = 13 + 3y
37 3
13
11
?
=-
143 111 32
11 11
-
==
?
32 37
, ,0
11 11
R
- ??
??
??
l1 & l2 are coplanar
?
32 37
54
11 11
3 1 2 0
7 5 11
??
- - - + ?
??
??
-=
??
??
--
??
??
87 7
11 11
3 1 2 0
7 5 11
--
?
= - =
--
? ? = 7
? P(3k –5, k –4, –2k + 7) is nearest to (–4, –3, 2)
1
0 QP n ?=
( ) ( ) ( )
( ) ( )
3 1 1 2 5 3 2 0 k i k j k k i j k - + - + - + ? + - =
? 9k –3 + k –1 + 4k – 10 = 0
= 14k = 14 ? k = 1
? P(–2, –3, 5) ? (a, b, c)
|a| + |b| + |c| = 2 + 3 + 5 = 10
? option (4) is correct
Read More