Download, print and study this document offline |
Page 1 8. Transformation Formulae Exercise 8.1 1. Question Express each of the following as the sum or difference of sines and cosines: (i) 2 sin 3x cos x (ii) 2 cos 3x sin 2x (iii) 2 sin 4x sin 3x (iv) 2 cos 7x cos 3x Answer (i) We know, 2 sin A cos B = sin(A + B) + sin(A – B) 2 sin 3x cos x = sin (3x + x) + sin (3x – x) = sin (4x) + sin (2x) = sin 4x + sin 2x (ii) We know, 2 cos A sin B = sin (A + B) – sin (A – B) 2 cos 3x sin 2x = sin (3x + 2x) – sin (3x – 2x) = sin (5x) – sin (x) = sin 5x – sin x (iii) We know, 2 sin A sin B = cos (A – B) – cos (A + B) 2 sin 4x sin 3x = cos (4x – 3x) – cos (4x + 3x) = cos (x) – cos (7x) = cos x – cos 7x (iv) We know, 2 cos A cos B = cos (A + B) + cos (A – B) 2 sin 3x cos x = cos (7x + 3x) + cos (7x – 3x) = cos (10x) + cos (4x) = cos 10x + cos 4x 2. Question Prove that : i. ii. iii. Answer i. We know, 2 sin A sin B = cos (A – B) – cos (A + B) = cos 60° - cos 90° Hence Proved ii. We know, 2 cos A cos B = cos (A + B) + cos (A – B) Page 2 8. Transformation Formulae Exercise 8.1 1. Question Express each of the following as the sum or difference of sines and cosines: (i) 2 sin 3x cos x (ii) 2 cos 3x sin 2x (iii) 2 sin 4x sin 3x (iv) 2 cos 7x cos 3x Answer (i) We know, 2 sin A cos B = sin(A + B) + sin(A – B) 2 sin 3x cos x = sin (3x + x) + sin (3x – x) = sin (4x) + sin (2x) = sin 4x + sin 2x (ii) We know, 2 cos A sin B = sin (A + B) – sin (A – B) 2 cos 3x sin 2x = sin (3x + 2x) – sin (3x – 2x) = sin (5x) – sin (x) = sin 5x – sin x (iii) We know, 2 sin A sin B = cos (A – B) – cos (A + B) 2 sin 4x sin 3x = cos (4x – 3x) – cos (4x + 3x) = cos (x) – cos (7x) = cos x – cos 7x (iv) We know, 2 cos A cos B = cos (A + B) + cos (A – B) 2 sin 3x cos x = cos (7x + 3x) + cos (7x – 3x) = cos (10x) + cos (4x) = cos 10x + cos 4x 2. Question Prove that : i. ii. iii. Answer i. We know, 2 sin A sin B = cos (A – B) – cos (A + B) = cos 60° - cos 90° Hence Proved ii. We know, 2 cos A cos B = cos (A + B) + cos (A – B) = cos 90° + cos 60° Hence Proved iii. We know, 2 sin A cos B = sin (A + B) + sin (A – B) = sin 90° + sin 60° Hence Proved 3. Question Show that: i. ii. Answer i. We know, 2 sin A cos B = sin (A + B) + sin (A – B) {sin (-x) = - sin x} {sin (180° - x) = sin x} Page 3 8. Transformation Formulae Exercise 8.1 1. Question Express each of the following as the sum or difference of sines and cosines: (i) 2 sin 3x cos x (ii) 2 cos 3x sin 2x (iii) 2 sin 4x sin 3x (iv) 2 cos 7x cos 3x Answer (i) We know, 2 sin A cos B = sin(A + B) + sin(A – B) 2 sin 3x cos x = sin (3x + x) + sin (3x – x) = sin (4x) + sin (2x) = sin 4x + sin 2x (ii) We know, 2 cos A sin B = sin (A + B) – sin (A – B) 2 cos 3x sin 2x = sin (3x + 2x) – sin (3x – 2x) = sin (5x) – sin (x) = sin 5x – sin x (iii) We know, 2 sin A sin B = cos (A – B) – cos (A + B) 2 sin 4x sin 3x = cos (4x – 3x) – cos (4x + 3x) = cos (x) – cos (7x) = cos x – cos 7x (iv) We know, 2 cos A cos B = cos (A + B) + cos (A – B) 2 sin 3x cos x = cos (7x + 3x) + cos (7x – 3x) = cos (10x) + cos (4x) = cos 10x + cos 4x 2. Question Prove that : i. ii. iii. Answer i. We know, 2 sin A sin B = cos (A – B) – cos (A + B) = cos 60° - cos 90° Hence Proved ii. We know, 2 cos A cos B = cos (A + B) + cos (A – B) = cos 90° + cos 60° Hence Proved iii. We know, 2 sin A cos B = sin (A + B) + sin (A – B) = sin 90° + sin 60° Hence Proved 3. Question Show that: i. ii. Answer i. We know, 2 sin A cos B = sin (A + B) + sin (A – B) {sin (-x) = - sin x} {sin (180° - x) = sin x} Hence Proved ii. We know, 2 sin A cos B = sin (A + B) + sin (A – B) Take L.H.S {sin (-x) = - sin x} = R.H.S. Hence Proved 4. Question Prove that: Answer Take L.H.S {2 cos A cos B = cos (A + B) + cos (A – B)} = 2 cos x {cos 120° + cos 2x} = 2 cos x {cos (180° - 60°) + cos 2x} {cos (180° - A) = - cos A} = 2 cos x (cos 2x - cos 60°) = 2 cos 2x cos x – 2 cos x cos 60° = cos 3x + cos x – cos x = cos 3x = R.H.S. Hence Proved 5 A. Question Prove that: Answer Take L.H.S Multiplying & Dividing by 2: Page 4 8. Transformation Formulae Exercise 8.1 1. Question Express each of the following as the sum or difference of sines and cosines: (i) 2 sin 3x cos x (ii) 2 cos 3x sin 2x (iii) 2 sin 4x sin 3x (iv) 2 cos 7x cos 3x Answer (i) We know, 2 sin A cos B = sin(A + B) + sin(A – B) 2 sin 3x cos x = sin (3x + x) + sin (3x – x) = sin (4x) + sin (2x) = sin 4x + sin 2x (ii) We know, 2 cos A sin B = sin (A + B) – sin (A – B) 2 cos 3x sin 2x = sin (3x + 2x) – sin (3x – 2x) = sin (5x) – sin (x) = sin 5x – sin x (iii) We know, 2 sin A sin B = cos (A – B) – cos (A + B) 2 sin 4x sin 3x = cos (4x – 3x) – cos (4x + 3x) = cos (x) – cos (7x) = cos x – cos 7x (iv) We know, 2 cos A cos B = cos (A + B) + cos (A – B) 2 sin 3x cos x = cos (7x + 3x) + cos (7x – 3x) = cos (10x) + cos (4x) = cos 10x + cos 4x 2. Question Prove that : i. ii. iii. Answer i. We know, 2 sin A sin B = cos (A – B) – cos (A + B) = cos 60° - cos 90° Hence Proved ii. We know, 2 cos A cos B = cos (A + B) + cos (A – B) = cos 90° + cos 60° Hence Proved iii. We know, 2 sin A cos B = sin (A + B) + sin (A – B) = sin 90° + sin 60° Hence Proved 3. Question Show that: i. ii. Answer i. We know, 2 sin A cos B = sin (A + B) + sin (A – B) {sin (-x) = - sin x} {sin (180° - x) = sin x} Hence Proved ii. We know, 2 sin A cos B = sin (A + B) + sin (A – B) Take L.H.S {sin (-x) = - sin x} = R.H.S. Hence Proved 4. Question Prove that: Answer Take L.H.S {2 cos A cos B = cos (A + B) + cos (A – B)} = 2 cos x {cos 120° + cos 2x} = 2 cos x {cos (180° - 60°) + cos 2x} {cos (180° - A) = - cos A} = 2 cos x (cos 2x - cos 60°) = 2 cos 2x cos x – 2 cos x cos 60° = cos 3x + cos x – cos x = cos 3x = R.H.S. Hence Proved 5 A. Question Prove that: Answer Take L.H.S Multiplying & Dividing by 2: {? 2 cos A cos B = cos (A + B) + cos (A – B)} {? cos (-A) = cos A} Multiplying & Dividing by 2: {? 2 cos A cos B = cos (A + B) + cos (A – B)} {? cos (180° - A) = - cos A} = R.H.S Hence Proved 5 B. Question Prove that: Answer Take L.H.S cos 40° cos 80° cos 160° Multiplying & Dividing by 2: {? 2 cos A cos B = cos (A + B) + cos (A – B)} {? cos (180° - A) = - cos A & cos (180° + A) = - cos A} Page 5 8. Transformation Formulae Exercise 8.1 1. Question Express each of the following as the sum or difference of sines and cosines: (i) 2 sin 3x cos x (ii) 2 cos 3x sin 2x (iii) 2 sin 4x sin 3x (iv) 2 cos 7x cos 3x Answer (i) We know, 2 sin A cos B = sin(A + B) + sin(A – B) 2 sin 3x cos x = sin (3x + x) + sin (3x – x) = sin (4x) + sin (2x) = sin 4x + sin 2x (ii) We know, 2 cos A sin B = sin (A + B) – sin (A – B) 2 cos 3x sin 2x = sin (3x + 2x) – sin (3x – 2x) = sin (5x) – sin (x) = sin 5x – sin x (iii) We know, 2 sin A sin B = cos (A – B) – cos (A + B) 2 sin 4x sin 3x = cos (4x – 3x) – cos (4x + 3x) = cos (x) – cos (7x) = cos x – cos 7x (iv) We know, 2 cos A cos B = cos (A + B) + cos (A – B) 2 sin 3x cos x = cos (7x + 3x) + cos (7x – 3x) = cos (10x) + cos (4x) = cos 10x + cos 4x 2. Question Prove that : i. ii. iii. Answer i. We know, 2 sin A sin B = cos (A – B) – cos (A + B) = cos 60° - cos 90° Hence Proved ii. We know, 2 cos A cos B = cos (A + B) + cos (A – B) = cos 90° + cos 60° Hence Proved iii. We know, 2 sin A cos B = sin (A + B) + sin (A – B) = sin 90° + sin 60° Hence Proved 3. Question Show that: i. ii. Answer i. We know, 2 sin A cos B = sin (A + B) + sin (A – B) {sin (-x) = - sin x} {sin (180° - x) = sin x} Hence Proved ii. We know, 2 sin A cos B = sin (A + B) + sin (A – B) Take L.H.S {sin (-x) = - sin x} = R.H.S. Hence Proved 4. Question Prove that: Answer Take L.H.S {2 cos A cos B = cos (A + B) + cos (A – B)} = 2 cos x {cos 120° + cos 2x} = 2 cos x {cos (180° - 60°) + cos 2x} {cos (180° - A) = - cos A} = 2 cos x (cos 2x - cos 60°) = 2 cos 2x cos x – 2 cos x cos 60° = cos 3x + cos x – cos x = cos 3x = R.H.S. Hence Proved 5 A. Question Prove that: Answer Take L.H.S Multiplying & Dividing by 2: {? 2 cos A cos B = cos (A + B) + cos (A – B)} {? cos (-A) = cos A} Multiplying & Dividing by 2: {? 2 cos A cos B = cos (A + B) + cos (A – B)} {? cos (180° - A) = - cos A} = R.H.S Hence Proved 5 B. Question Prove that: Answer Take L.H.S cos 40° cos 80° cos 160° Multiplying & Dividing by 2: {? 2 cos A cos B = cos (A + B) + cos (A – B)} {? cos (180° - A) = - cos A & cos (180° + A) = - cos A} Multiplying & Dividing by 2: {? 2 cos A cos B = cos (A + B) + cos (A – B)} {? cos (180° - A) = - cos A} = R.H.S Hence Proved 5 C. Question Prove that: Answer Take L.H.S sin 20° sin 40° sin 80° Multiplying & Dividing by 2: {? 2 sin A sin B = cos (A – B) – cos (A + B)} {? cos (-A) = cos A} Multiplying & Dividing by 2: {? 2 cos A sin B = sin (A + B) – sin (A – B)} {? sin (-A) = - sin A} {? sin (180° - A) = sin A}Read More
75 videos|238 docs|91 tests
|
|
Explore Courses for Commerce exam
|