JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Binomial Theorem & its Simple Applications: JEE Mains Previous Year Questions (2021-2024)

Binomial Theorem & its Simple Applications: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


JEE Mains Previous Year Questions 
(2021-2024): Binomial Theorem & its 
Simple Applications 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If the Coefficient of ?? 30
 in the expansion of (1+
1
?? )
6
(1+?? 2
)
7
(1-?? 3
)
8
;?? ?0 is ?? , then 
|?? | equals 
Q2 - 2024 (01 Feb Shift 2) 
Let ?? and ?? be the coefficients of seventh and thirteenth terms respectively in the 
expansion of (
1
3
?? 1
3
+
1
2?? 2
3
)
18
. Then (
n
m
)
1
3
 is : 
(1) 
4
9
 
(2) 
1
9
 
(3) 
1
4
 
(4) 
9
4
 
Q3 - 2024 (27 Jan Shift 1) 
 
?? -1
?? ?? =(?? 2
-8)
?? ?? ?? +1
 if and only if : 
(1) 2v2<k=3 
(2) 2v3<k=3v2 
(3) 2v3<k<3v3 
(4) 2v2<k<2v3 
Q4 - 2024 (27 Jan Shift 1) 
Page 2


JEE Mains Previous Year Questions 
(2021-2024): Binomial Theorem & its 
Simple Applications 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If the Coefficient of ?? 30
 in the expansion of (1+
1
?? )
6
(1+?? 2
)
7
(1-?? 3
)
8
;?? ?0 is ?? , then 
|?? | equals 
Q2 - 2024 (01 Feb Shift 2) 
Let ?? and ?? be the coefficients of seventh and thirteenth terms respectively in the 
expansion of (
1
3
?? 1
3
+
1
2?? 2
3
)
18
. Then (
n
m
)
1
3
 is : 
(1) 
4
9
 
(2) 
1
9
 
(3) 
1
4
 
(4) 
9
4
 
Q3 - 2024 (27 Jan Shift 1) 
 
?? -1
?? ?? =(?? 2
-8)
?? ?? ?? +1
 if and only if : 
(1) 2v2<k=3 
(2) 2v3<k=3v2 
(3) 2v3<k<3v3 
(4) 2v2<k<2v3 
Q4 - 2024 (27 Jan Shift 1) 
If ?? denotes the sum of all the coefficients in the expansion of (1-3?? +10?? 2
)
?? and ?? 
denotes the sum of all the coefficients in the expansion of (1+?? 2
)
?? , then : 
(1) ?? =?? 3
 
(2) 3 A=B 
(3) ?? =?? 3
 
(4) ?? =3?? 
Q5 - 2024 (27 Jan Shift 2) 
The coefficient of ?? 2012
 in the expansion of (1-?? )
2008
(1+?? +?? 2
)
2007
 is equal to 
Q6 - 2024 (29 Jan Shift 1) 
If 
 
11
C
1
2
+
 
11
C
2
3
+?+
 
11
C
9
10
=
n
m
 with gcd (n,m)=1, then n+m is equal to 
Q7 - 2024 (29 Jan Shift 2) 
Remainder when 64
32
32
 is divided by 9 is equal to 
Q8 - 2024 (30 Jan Shift 1) 
Number of integral terms in the expansion of {7
(
1
2
)
+11
(
1
6
)
}
824
 is equal to 
Q9 - 2024 (30 Jan Shift 2) 
Suppose 2-?? ,?? ,2-?? ,?? are the coefficient of four consecutive terms in the expansion 
of (1+?? )
?? . Then the value of ?? 2
-?? 2
+6?? +2?? equals 
[We changed options. In official NTA paper no option was correct.] 
(1) 4 
(2) 10 
(3) 8 
(4) Data Inconsistent 
Q10 - 2024 (30 Jan Shift 2) 
Let ?? =?
k=0
n
?(
( 
n
C
k
)
2
k+1
) and ?? =?
k=0
n-1
?(
 
n
C
k
 
n
C
k+1
k+2
) 
If 5?? =6?? , then n equals 
Q11 - 2024 (31 Jan Shift 1) 
Page 3


JEE Mains Previous Year Questions 
(2021-2024): Binomial Theorem & its 
Simple Applications 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If the Coefficient of ?? 30
 in the expansion of (1+
1
?? )
6
(1+?? 2
)
7
(1-?? 3
)
8
;?? ?0 is ?? , then 
|?? | equals 
Q2 - 2024 (01 Feb Shift 2) 
Let ?? and ?? be the coefficients of seventh and thirteenth terms respectively in the 
expansion of (
1
3
?? 1
3
+
1
2?? 2
3
)
18
. Then (
n
m
)
1
3
 is : 
(1) 
4
9
 
(2) 
1
9
 
(3) 
1
4
 
(4) 
9
4
 
Q3 - 2024 (27 Jan Shift 1) 
 
?? -1
?? ?? =(?? 2
-8)
?? ?? ?? +1
 if and only if : 
(1) 2v2<k=3 
(2) 2v3<k=3v2 
(3) 2v3<k<3v3 
(4) 2v2<k<2v3 
Q4 - 2024 (27 Jan Shift 1) 
If ?? denotes the sum of all the coefficients in the expansion of (1-3?? +10?? 2
)
?? and ?? 
denotes the sum of all the coefficients in the expansion of (1+?? 2
)
?? , then : 
(1) ?? =?? 3
 
(2) 3 A=B 
(3) ?? =?? 3
 
(4) ?? =3?? 
Q5 - 2024 (27 Jan Shift 2) 
The coefficient of ?? 2012
 in the expansion of (1-?? )
2008
(1+?? +?? 2
)
2007
 is equal to 
Q6 - 2024 (29 Jan Shift 1) 
If 
 
11
C
1
2
+
 
11
C
2
3
+?+
 
11
C
9
10
=
n
m
 with gcd (n,m)=1, then n+m is equal to 
Q7 - 2024 (29 Jan Shift 2) 
Remainder when 64
32
32
 is divided by 9 is equal to 
Q8 - 2024 (30 Jan Shift 1) 
Number of integral terms in the expansion of {7
(
1
2
)
+11
(
1
6
)
}
824
 is equal to 
Q9 - 2024 (30 Jan Shift 2) 
Suppose 2-?? ,?? ,2-?? ,?? are the coefficient of four consecutive terms in the expansion 
of (1+?? )
?? . Then the value of ?? 2
-?? 2
+6?? +2?? equals 
[We changed options. In official NTA paper no option was correct.] 
(1) 4 
(2) 10 
(3) 8 
(4) Data Inconsistent 
Q10 - 2024 (30 Jan Shift 2) 
Let ?? =?
k=0
n
?(
( 
n
C
k
)
2
k+1
) and ?? =?
k=0
n-1
?(
 
n
C
k
 
n
C
k+1
k+2
) 
If 5?? =6?? , then n equals 
Q11 - 2024 (31 Jan Shift 1) 
In the expansion of (1+?? )(1-?? 2
)(1+
3
?? +
3
?? 2
+
1
?? 3
)
5
,?? ?0, the sum of the coefficient of 
?? 3
 and ?? -13
 is equal to 
Q12 - 2024 (31 Jan Shift 2) 
If for some m,n; 
6
C
m
+2( 
6
C
m+1
)+ 
6
C
m+2
> 
8
C
3
 and  
?? -1
?? 3
: 
?? ?? 4
=1:8, then  
?? ?? ?? +1
+
 
?? +1
?? ?? is equal to 
(1) 380 
(2) 376 
(3) 384 
(4) 372 
Q13 - 2024 (31 Jan Shift 2) 
Let the coefficient of ?? ?? in the expansion of (x+3)
n-1
+(x+3)
n-2
(x+2)+ (x+
3)
n-3
(x+2)
2
+?…+(x+2)
n-1
 be ?? ?? . If ?
?? =0
?? ??? ?? =?? ?? -?? ?? ,?? ,?? ??? , then the value of 
?? 2
+?? 2
 equals 
Answer Key 
Q1 (678)  Q2(4) Q3 (1)  Q4(1) 
Q5 (0)  Q6 (2041) Q7 (1) Q8 (138) 
Q9 (4) Q10 (10) Q11 (118) Q12 (4) 
Q13 (25)    
 
Solutions 
Q1 
coeff of ?? 30
 in 
(?? +1)
6
(1+?? 2
)
7
(1-?? 3
)
8
?? 6
 coeff. of ?? 36
 in (1+?? )
6
(1+?? 2
)
7
(1-?? 3
)
8
 
General term 
 
6
C
r
1
 
7
C
r
2
 
8
C
r
3
(-1)
r
3
X
r
1
+2r
2
+3r
3
 
r
1
+2r
2
+3r
3
=36 
 
Page 4


JEE Mains Previous Year Questions 
(2021-2024): Binomial Theorem & its 
Simple Applications 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If the Coefficient of ?? 30
 in the expansion of (1+
1
?? )
6
(1+?? 2
)
7
(1-?? 3
)
8
;?? ?0 is ?? , then 
|?? | equals 
Q2 - 2024 (01 Feb Shift 2) 
Let ?? and ?? be the coefficients of seventh and thirteenth terms respectively in the 
expansion of (
1
3
?? 1
3
+
1
2?? 2
3
)
18
. Then (
n
m
)
1
3
 is : 
(1) 
4
9
 
(2) 
1
9
 
(3) 
1
4
 
(4) 
9
4
 
Q3 - 2024 (27 Jan Shift 1) 
 
?? -1
?? ?? =(?? 2
-8)
?? ?? ?? +1
 if and only if : 
(1) 2v2<k=3 
(2) 2v3<k=3v2 
(3) 2v3<k<3v3 
(4) 2v2<k<2v3 
Q4 - 2024 (27 Jan Shift 1) 
If ?? denotes the sum of all the coefficients in the expansion of (1-3?? +10?? 2
)
?? and ?? 
denotes the sum of all the coefficients in the expansion of (1+?? 2
)
?? , then : 
(1) ?? =?? 3
 
(2) 3 A=B 
(3) ?? =?? 3
 
(4) ?? =3?? 
Q5 - 2024 (27 Jan Shift 2) 
The coefficient of ?? 2012
 in the expansion of (1-?? )
2008
(1+?? +?? 2
)
2007
 is equal to 
Q6 - 2024 (29 Jan Shift 1) 
If 
 
11
C
1
2
+
 
11
C
2
3
+?+
 
11
C
9
10
=
n
m
 with gcd (n,m)=1, then n+m is equal to 
Q7 - 2024 (29 Jan Shift 2) 
Remainder when 64
32
32
 is divided by 9 is equal to 
Q8 - 2024 (30 Jan Shift 1) 
Number of integral terms in the expansion of {7
(
1
2
)
+11
(
1
6
)
}
824
 is equal to 
Q9 - 2024 (30 Jan Shift 2) 
Suppose 2-?? ,?? ,2-?? ,?? are the coefficient of four consecutive terms in the expansion 
of (1+?? )
?? . Then the value of ?? 2
-?? 2
+6?? +2?? equals 
[We changed options. In official NTA paper no option was correct.] 
(1) 4 
(2) 10 
(3) 8 
(4) Data Inconsistent 
Q10 - 2024 (30 Jan Shift 2) 
Let ?? =?
k=0
n
?(
( 
n
C
k
)
2
k+1
) and ?? =?
k=0
n-1
?(
 
n
C
k
 
n
C
k+1
k+2
) 
If 5?? =6?? , then n equals 
Q11 - 2024 (31 Jan Shift 1) 
In the expansion of (1+?? )(1-?? 2
)(1+
3
?? +
3
?? 2
+
1
?? 3
)
5
,?? ?0, the sum of the coefficient of 
?? 3
 and ?? -13
 is equal to 
Q12 - 2024 (31 Jan Shift 2) 
If for some m,n; 
6
C
m
+2( 
6
C
m+1
)+ 
6
C
m+2
> 
8
C
3
 and  
?? -1
?? 3
: 
?? ?? 4
=1:8, then  
?? ?? ?? +1
+
 
?? +1
?? ?? is equal to 
(1) 380 
(2) 376 
(3) 384 
(4) 372 
Q13 - 2024 (31 Jan Shift 2) 
Let the coefficient of ?? ?? in the expansion of (x+3)
n-1
+(x+3)
n-2
(x+2)+ (x+
3)
n-3
(x+2)
2
+?…+(x+2)
n-1
 be ?? ?? . If ?
?? =0
?? ??? ?? =?? ?? -?? ?? ,?? ,?? ??? , then the value of 
?? 2
+?? 2
 equals 
Answer Key 
Q1 (678)  Q2(4) Q3 (1)  Q4(1) 
Q5 (0)  Q6 (2041) Q7 (1) Q8 (138) 
Q9 (4) Q10 (10) Q11 (118) Q12 (4) 
Q13 (25)    
 
Solutions 
Q1 
coeff of ?? 30
 in 
(?? +1)
6
(1+?? 2
)
7
(1-?? 3
)
8
?? 6
 coeff. of ?? 36
 in (1+?? )
6
(1+?? 2
)
7
(1-?? 3
)
8
 
General term 
 
6
C
r
1
 
7
C
r
2
 
8
C
r
3
(-1)
r
3
X
r
1
+2r
2
+3r
3
 
r
1
+2r
2
+3r
3
=36 
 
 
 
 
 
Case-I : 
?? 1
 ?? 2
 ?? 3
 
0 6 8 
2 5 8 
4 4 8 
6 3 8 
 
?? 1
+2?? 2
=12Taking ?? 3
=8) 
Case II. 
?? 1
 ?? 2
 ?? 3
 
1 7 7 
3 6 7 
5 5 7 
 
?? 1
+2?? 2
=15 Taking ?? 3
=7) 
?? 1
 ?? 2
 ?? 3
 
4 7 6 
6 6 6 
 
Case-III : 
?? 1
+2?? 2
=18 (Taking ?? 3
=6) 
Page 5


JEE Mains Previous Year Questions 
(2021-2024): Binomial Theorem & its 
Simple Applications 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If the Coefficient of ?? 30
 in the expansion of (1+
1
?? )
6
(1+?? 2
)
7
(1-?? 3
)
8
;?? ?0 is ?? , then 
|?? | equals 
Q2 - 2024 (01 Feb Shift 2) 
Let ?? and ?? be the coefficients of seventh and thirteenth terms respectively in the 
expansion of (
1
3
?? 1
3
+
1
2?? 2
3
)
18
. Then (
n
m
)
1
3
 is : 
(1) 
4
9
 
(2) 
1
9
 
(3) 
1
4
 
(4) 
9
4
 
Q3 - 2024 (27 Jan Shift 1) 
 
?? -1
?? ?? =(?? 2
-8)
?? ?? ?? +1
 if and only if : 
(1) 2v2<k=3 
(2) 2v3<k=3v2 
(3) 2v3<k<3v3 
(4) 2v2<k<2v3 
Q4 - 2024 (27 Jan Shift 1) 
If ?? denotes the sum of all the coefficients in the expansion of (1-3?? +10?? 2
)
?? and ?? 
denotes the sum of all the coefficients in the expansion of (1+?? 2
)
?? , then : 
(1) ?? =?? 3
 
(2) 3 A=B 
(3) ?? =?? 3
 
(4) ?? =3?? 
Q5 - 2024 (27 Jan Shift 2) 
The coefficient of ?? 2012
 in the expansion of (1-?? )
2008
(1+?? +?? 2
)
2007
 is equal to 
Q6 - 2024 (29 Jan Shift 1) 
If 
 
11
C
1
2
+
 
11
C
2
3
+?+
 
11
C
9
10
=
n
m
 with gcd (n,m)=1, then n+m is equal to 
Q7 - 2024 (29 Jan Shift 2) 
Remainder when 64
32
32
 is divided by 9 is equal to 
Q8 - 2024 (30 Jan Shift 1) 
Number of integral terms in the expansion of {7
(
1
2
)
+11
(
1
6
)
}
824
 is equal to 
Q9 - 2024 (30 Jan Shift 2) 
Suppose 2-?? ,?? ,2-?? ,?? are the coefficient of four consecutive terms in the expansion 
of (1+?? )
?? . Then the value of ?? 2
-?? 2
+6?? +2?? equals 
[We changed options. In official NTA paper no option was correct.] 
(1) 4 
(2) 10 
(3) 8 
(4) Data Inconsistent 
Q10 - 2024 (30 Jan Shift 2) 
Let ?? =?
k=0
n
?(
( 
n
C
k
)
2
k+1
) and ?? =?
k=0
n-1
?(
 
n
C
k
 
n
C
k+1
k+2
) 
If 5?? =6?? , then n equals 
Q11 - 2024 (31 Jan Shift 1) 
In the expansion of (1+?? )(1-?? 2
)(1+
3
?? +
3
?? 2
+
1
?? 3
)
5
,?? ?0, the sum of the coefficient of 
?? 3
 and ?? -13
 is equal to 
Q12 - 2024 (31 Jan Shift 2) 
If for some m,n; 
6
C
m
+2( 
6
C
m+1
)+ 
6
C
m+2
> 
8
C
3
 and  
?? -1
?? 3
: 
?? ?? 4
=1:8, then  
?? ?? ?? +1
+
 
?? +1
?? ?? is equal to 
(1) 380 
(2) 376 
(3) 384 
(4) 372 
Q13 - 2024 (31 Jan Shift 2) 
Let the coefficient of ?? ?? in the expansion of (x+3)
n-1
+(x+3)
n-2
(x+2)+ (x+
3)
n-3
(x+2)
2
+?…+(x+2)
n-1
 be ?? ?? . If ?
?? =0
?? ??? ?? =?? ?? -?? ?? ,?? ,?? ??? , then the value of 
?? 2
+?? 2
 equals 
Answer Key 
Q1 (678)  Q2(4) Q3 (1)  Q4(1) 
Q5 (0)  Q6 (2041) Q7 (1) Q8 (138) 
Q9 (4) Q10 (10) Q11 (118) Q12 (4) 
Q13 (25)    
 
Solutions 
Q1 
coeff of ?? 30
 in 
(?? +1)
6
(1+?? 2
)
7
(1-?? 3
)
8
?? 6
 coeff. of ?? 36
 in (1+?? )
6
(1+?? 2
)
7
(1-?? 3
)
8
 
General term 
 
6
C
r
1
 
7
C
r
2
 
8
C
r
3
(-1)
r
3
X
r
1
+2r
2
+3r
3
 
r
1
+2r
2
+3r
3
=36 
 
 
 
 
 
Case-I : 
?? 1
 ?? 2
 ?? 3
 
0 6 8 
2 5 8 
4 4 8 
6 3 8 
 
?? 1
+2?? 2
=12Taking ?? 3
=8) 
Case II. 
?? 1
 ?? 2
 ?? 3
 
1 7 7 
3 6 7 
5 5 7 
 
?? 1
+2?? 2
=15 Taking ?? 3
=7) 
?? 1
 ?? 2
 ?? 3
 
4 7 6 
6 6 6 
 
Case-III : 
?? 1
+2?? 2
=18 (Taking ?? 3
=6) 
Coeff. =7+(15×21)+(15×35)+(35) 
-(6×8)-(20×7×8)-(6×21×8)+(15×28) 
+(7×28)=-678=?? 
|?? |=678 
 
Q2 
(
?? 1
3
3
+
?? -2
3
18
)
18
 
t
7
= 
18
c
6
(
x
1
3
3
)
12
(
x
-2
3
2
)
6
= 
18
c
6
1
(3)
12
·
1
2
6
 
?? 13
= 
18
?? 12
(
?? 1
3
3
)
6
(
?? -2
3
2
)
12
= 
18
?? 12
1
(3)
6
·
1
2
12
·?? -6
 
m= 
18
c
6
·3
-12
·2
-6
:n= 
18
c
12
·2
-12
·3
-6
 
(
n
m
)
1
3
=(
2
-12
·3
-6
3
-12
·2
-6
)
1
3
=(
3
2
)
2
=
9
4
 
Q3 
 
?? -1
?? ?? =(?? 2
-8) 
?? ?? ?? +1
?? +1=0,?? =0 ?          
?? =0
 
?? ?? ?? 
?? ?? ?? +1
=?? 2
-8
?? +1
?? =?? 2
-8
 ??? 2
-8>0
 
k?(-8,-2v2)?(2v2,8) 
?n=r+1,
r+1
n
=1 
?k
2
-8=1 
k
2
-9=0#(???? ) 
Read More
209 videos|443 docs|143 tests

Top Courses for JEE

209 videos|443 docs|143 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Binomial Theorem & its Simple Applications: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

Important questions

,

ppt

,

Extra Questions

,

Viva Questions

,

practice quizzes

,

Free

,

past year papers

,

mock tests for examination

,

Binomial Theorem & its Simple Applications: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

Objective type Questions

,

Previous Year Questions with Solutions

,

Exam

,

Binomial Theorem & its Simple Applications: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

video lectures

,

MCQs

,

pdf

,

Semester Notes

,

shortcuts and tricks

,

Sample Paper

,

Summary

,

study material

;