JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Inverse Trigonometric Functions: JEE Mains Previous Year Questions (2021-2024)

Inverse Trigonometric Functions: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


JEE Mains Previous Year Questions 
(2021-2024): Inverse Trigonometric 
Functions 
2024 
Q1 - 2024 (27 Jan Shift 2) 
Considering only the principal values of inverse trigonometric functions, the number of 
positive real values of ?? satisfying t a n
- 1
? ( ?? ) + t a n
- 1
? ( 2 ?? ) =
?? 4
 is : 
(1) More than 2 
(2) 1 
(3) 2 
(4) 0 
Q2 - 2024 (29 Jan Shift 2) 
Let x =
m
n
( m , n are co-prime natural numbers) be a solution of the equation 
c o s ? ( 2 sin
- 1
? ?? ) =
1
9
 and let ?? , ?? ( ?? > ?? ) be the roots of the equation mx
2
- nx - m + n = 0. 
Then the point ( ?? , ?? ) lies on the line 
(1) 3 ?? + 2 ?? = 2 
(2) 5 ?? - 8 ?? = - 9 
(3) 3 ?? - 2 ?? = - 2 
(4) 5 ?? + 8 ?? = 9 
Q3 - 2024 (31 Jan Shift 1) 
For ?? , ?? , ?? ? 0. If sin
- 1
? ?? + sin
- 1
? ?? + sin
- 1
? ?? = ?? and ( ?? + ?? + ?? ) ( ?? - ?? + ?? ) = 3 ???? , then 
?? equal to 
(1) 
v 3
2
 
(2) 
1
v 2
 
Page 2


JEE Mains Previous Year Questions 
(2021-2024): Inverse Trigonometric 
Functions 
2024 
Q1 - 2024 (27 Jan Shift 2) 
Considering only the principal values of inverse trigonometric functions, the number of 
positive real values of ?? satisfying t a n
- 1
? ( ?? ) + t a n
- 1
? ( 2 ?? ) =
?? 4
 is : 
(1) More than 2 
(2) 1 
(3) 2 
(4) 0 
Q2 - 2024 (29 Jan Shift 2) 
Let x =
m
n
( m , n are co-prime natural numbers) be a solution of the equation 
c o s ? ( 2 sin
- 1
? ?? ) =
1
9
 and let ?? , ?? ( ?? > ?? ) be the roots of the equation mx
2
- nx - m + n = 0. 
Then the point ( ?? , ?? ) lies on the line 
(1) 3 ?? + 2 ?? = 2 
(2) 5 ?? - 8 ?? = - 9 
(3) 3 ?? - 2 ?? = - 2 
(4) 5 ?? + 8 ?? = 9 
Q3 - 2024 (31 Jan Shift 1) 
For ?? , ?? , ?? ? 0. If sin
- 1
? ?? + sin
- 1
? ?? + sin
- 1
? ?? = ?? and ( ?? + ?? + ?? ) ( ?? - ?? + ?? ) = 3 ???? , then 
?? equal to 
(1) 
v 3
2
 
(2) 
1
v 2
 
(3) 
v 3 - 1
2 v 2
 
(4) v 3 
Q4 - 2024 (31 Jan Shift 2) 
If ?? = sin
- 1
? ( s i n ? ( 5 ) ) and ?? = c o s
- 1
? ( c o s ? ( 5 ) ), then ?? 2
+ ?? 2
 is equal to 
(1) 4 ?? 2
+ 25 
(2) 8 ?? 2
- 40 ?? + 50 
(3) 4 ?? 2
- 20 ?? + 50 
(4) 25 
Answer Key 
Q1 (2) 
Q2 (4) 
Q3 (1) 
Q4 (2) 
Solutions 
Q1 
t a n
- 1
? ?? + t a n
- 1
? 2 ?? =
?? 4
; ?? > 0 
? t a n
- 1
? 2x =
?? 4
- t a n
- 1
? x 
Taking tan both sides 
? 2 ?? =
1 - ?? 1 + ?? 
? 2 ?? 2
+ 3 ?? - 1 = 0 
?? =
- 3 ± v 9 + 8
8
=
- 3 ± v 17
8
 
Only possible ?? =
- 3 + v 17
8
 
Q2 
Page 3


JEE Mains Previous Year Questions 
(2021-2024): Inverse Trigonometric 
Functions 
2024 
Q1 - 2024 (27 Jan Shift 2) 
Considering only the principal values of inverse trigonometric functions, the number of 
positive real values of ?? satisfying t a n
- 1
? ( ?? ) + t a n
- 1
? ( 2 ?? ) =
?? 4
 is : 
(1) More than 2 
(2) 1 
(3) 2 
(4) 0 
Q2 - 2024 (29 Jan Shift 2) 
Let x =
m
n
( m , n are co-prime natural numbers) be a solution of the equation 
c o s ? ( 2 sin
- 1
? ?? ) =
1
9
 and let ?? , ?? ( ?? > ?? ) be the roots of the equation mx
2
- nx - m + n = 0. 
Then the point ( ?? , ?? ) lies on the line 
(1) 3 ?? + 2 ?? = 2 
(2) 5 ?? - 8 ?? = - 9 
(3) 3 ?? - 2 ?? = - 2 
(4) 5 ?? + 8 ?? = 9 
Q3 - 2024 (31 Jan Shift 1) 
For ?? , ?? , ?? ? 0. If sin
- 1
? ?? + sin
- 1
? ?? + sin
- 1
? ?? = ?? and ( ?? + ?? + ?? ) ( ?? - ?? + ?? ) = 3 ???? , then 
?? equal to 
(1) 
v 3
2
 
(2) 
1
v 2
 
(3) 
v 3 - 1
2 v 2
 
(4) v 3 
Q4 - 2024 (31 Jan Shift 2) 
If ?? = sin
- 1
? ( s i n ? ( 5 ) ) and ?? = c o s
- 1
? ( c o s ? ( 5 ) ), then ?? 2
+ ?? 2
 is equal to 
(1) 4 ?? 2
+ 25 
(2) 8 ?? 2
- 40 ?? + 50 
(3) 4 ?? 2
- 20 ?? + 50 
(4) 25 
Answer Key 
Q1 (2) 
Q2 (4) 
Q3 (1) 
Q4 (2) 
Solutions 
Q1 
t a n
- 1
? ?? + t a n
- 1
? 2 ?? =
?? 4
; ?? > 0 
? t a n
- 1
? 2x =
?? 4
- t a n
- 1
? x 
Taking tan both sides 
? 2 ?? =
1 - ?? 1 + ?? 
? 2 ?? 2
+ 3 ?? - 1 = 0 
?? =
- 3 ± v 9 + 8
8
=
- 3 ± v 17
8
 
Only possible ?? =
- 3 + v 17
8
 
Q2 
Assume sin
- 1
? ?? = ?? 
c o s ? ( 2 ?? ) =
1
9
 
sin ? ?? = ±
2
3
 
as m and n are co-prime natural numbers, 
?? =
2
3
 
i.e. ?? = 2 , ?? = 3 
So, the quadratic equation becomes 2 ?? 2
- 3 ?? + 1 = 0 whose roots are ?? = 1 , ?? =
1
2
( 1 ,
1
2
) 
lies on 5 ?? + 8 ?? = 9 
Q3 
Let sin
- 1
? ?? = A , sin
- 1
? ?? = B , sin
- 1
? ?? = C 
A + B + C = ?? 
( ?? + ?? )
2
- ?? 2
= 3 ???? 
?? 2
+ ?? 2
- ?? 2
= ???? 
?? 2
+ ?? 2
- ?? 2
2 ????
=
1
2
 
? c o s ? C =
1
2
 
sin ? C = ?? 
c o s ? C = v 1 - ?? 2
=
1
2
 
?? =
v 3
2
 
Q4 
?? = sin
- 1
? ( sin ? 5 ) = 5 - 2 ?? 
and ?? = c o s
- 1
? ( c o s ? 5 ) = 2 ?? - 5 
? ?? 2
+ ?? 2
= ( 5 - 2 ?? )
2
+ ( 2 ?? - 5 )
2
 
= 8 ?? 2
- 40 ?? + 50 
Page 4


JEE Mains Previous Year Questions 
(2021-2024): Inverse Trigonometric 
Functions 
2024 
Q1 - 2024 (27 Jan Shift 2) 
Considering only the principal values of inverse trigonometric functions, the number of 
positive real values of ?? satisfying t a n
- 1
? ( ?? ) + t a n
- 1
? ( 2 ?? ) =
?? 4
 is : 
(1) More than 2 
(2) 1 
(3) 2 
(4) 0 
Q2 - 2024 (29 Jan Shift 2) 
Let x =
m
n
( m , n are co-prime natural numbers) be a solution of the equation 
c o s ? ( 2 sin
- 1
? ?? ) =
1
9
 and let ?? , ?? ( ?? > ?? ) be the roots of the equation mx
2
- nx - m + n = 0. 
Then the point ( ?? , ?? ) lies on the line 
(1) 3 ?? + 2 ?? = 2 
(2) 5 ?? - 8 ?? = - 9 
(3) 3 ?? - 2 ?? = - 2 
(4) 5 ?? + 8 ?? = 9 
Q3 - 2024 (31 Jan Shift 1) 
For ?? , ?? , ?? ? 0. If sin
- 1
? ?? + sin
- 1
? ?? + sin
- 1
? ?? = ?? and ( ?? + ?? + ?? ) ( ?? - ?? + ?? ) = 3 ???? , then 
?? equal to 
(1) 
v 3
2
 
(2) 
1
v 2
 
(3) 
v 3 - 1
2 v 2
 
(4) v 3 
Q4 - 2024 (31 Jan Shift 2) 
If ?? = sin
- 1
? ( s i n ? ( 5 ) ) and ?? = c o s
- 1
? ( c o s ? ( 5 ) ), then ?? 2
+ ?? 2
 is equal to 
(1) 4 ?? 2
+ 25 
(2) 8 ?? 2
- 40 ?? + 50 
(3) 4 ?? 2
- 20 ?? + 50 
(4) 25 
Answer Key 
Q1 (2) 
Q2 (4) 
Q3 (1) 
Q4 (2) 
Solutions 
Q1 
t a n
- 1
? ?? + t a n
- 1
? 2 ?? =
?? 4
; ?? > 0 
? t a n
- 1
? 2x =
?? 4
- t a n
- 1
? x 
Taking tan both sides 
? 2 ?? =
1 - ?? 1 + ?? 
? 2 ?? 2
+ 3 ?? - 1 = 0 
?? =
- 3 ± v 9 + 8
8
=
- 3 ± v 17
8
 
Only possible ?? =
- 3 + v 17
8
 
Q2 
Assume sin
- 1
? ?? = ?? 
c o s ? ( 2 ?? ) =
1
9
 
sin ? ?? = ±
2
3
 
as m and n are co-prime natural numbers, 
?? =
2
3
 
i.e. ?? = 2 , ?? = 3 
So, the quadratic equation becomes 2 ?? 2
- 3 ?? + 1 = 0 whose roots are ?? = 1 , ?? =
1
2
( 1 ,
1
2
) 
lies on 5 ?? + 8 ?? = 9 
Q3 
Let sin
- 1
? ?? = A , sin
- 1
? ?? = B , sin
- 1
? ?? = C 
A + B + C = ?? 
( ?? + ?? )
2
- ?? 2
= 3 ???? 
?? 2
+ ?? 2
- ?? 2
= ???? 
?? 2
+ ?? 2
- ?? 2
2 ????
=
1
2
 
? c o s ? C =
1
2
 
sin ? C = ?? 
c o s ? C = v 1 - ?? 2
=
1
2
 
?? =
v 3
2
 
Q4 
?? = sin
- 1
? ( sin ? 5 ) = 5 - 2 ?? 
and ?? = c o s
- 1
? ( c o s ? 5 ) = 2 ?? - 5 
? ?? 2
+ ?? 2
= ( 5 - 2 ?? )
2
+ ( 2 ?? - 5 )
2
 
= 8 ?? 2
- 40 ?? + 50 
Numerical 2023 
Question:1
 
JEE Main 2023 (Online) 13th April Evening Shift 
 
Question:2  
 
JEE Main 2023 (Online) 13th April Morning Shift 
Question:3 
 
JEE Main 2023 (Online) 10th April Evening Shift 
Question:4 
 
JEE Main 2023 (Online) 25th January Morning Shift 
 
 
Numerical Answer Key 
 
1. Ans. (2)  
2. Ans. (4) 
3. Ans. (24)  
4. Ans. (2) 
 
Page 5


JEE Mains Previous Year Questions 
(2021-2024): Inverse Trigonometric 
Functions 
2024 
Q1 - 2024 (27 Jan Shift 2) 
Considering only the principal values of inverse trigonometric functions, the number of 
positive real values of ?? satisfying t a n
- 1
? ( ?? ) + t a n
- 1
? ( 2 ?? ) =
?? 4
 is : 
(1) More than 2 
(2) 1 
(3) 2 
(4) 0 
Q2 - 2024 (29 Jan Shift 2) 
Let x =
m
n
( m , n are co-prime natural numbers) be a solution of the equation 
c o s ? ( 2 sin
- 1
? ?? ) =
1
9
 and let ?? , ?? ( ?? > ?? ) be the roots of the equation mx
2
- nx - m + n = 0. 
Then the point ( ?? , ?? ) lies on the line 
(1) 3 ?? + 2 ?? = 2 
(2) 5 ?? - 8 ?? = - 9 
(3) 3 ?? - 2 ?? = - 2 
(4) 5 ?? + 8 ?? = 9 
Q3 - 2024 (31 Jan Shift 1) 
For ?? , ?? , ?? ? 0. If sin
- 1
? ?? + sin
- 1
? ?? + sin
- 1
? ?? = ?? and ( ?? + ?? + ?? ) ( ?? - ?? + ?? ) = 3 ???? , then 
?? equal to 
(1) 
v 3
2
 
(2) 
1
v 2
 
(3) 
v 3 - 1
2 v 2
 
(4) v 3 
Q4 - 2024 (31 Jan Shift 2) 
If ?? = sin
- 1
? ( s i n ? ( 5 ) ) and ?? = c o s
- 1
? ( c o s ? ( 5 ) ), then ?? 2
+ ?? 2
 is equal to 
(1) 4 ?? 2
+ 25 
(2) 8 ?? 2
- 40 ?? + 50 
(3) 4 ?? 2
- 20 ?? + 50 
(4) 25 
Answer Key 
Q1 (2) 
Q2 (4) 
Q3 (1) 
Q4 (2) 
Solutions 
Q1 
t a n
- 1
? ?? + t a n
- 1
? 2 ?? =
?? 4
; ?? > 0 
? t a n
- 1
? 2x =
?? 4
- t a n
- 1
? x 
Taking tan both sides 
? 2 ?? =
1 - ?? 1 + ?? 
? 2 ?? 2
+ 3 ?? - 1 = 0 
?? =
- 3 ± v 9 + 8
8
=
- 3 ± v 17
8
 
Only possible ?? =
- 3 + v 17
8
 
Q2 
Assume sin
- 1
? ?? = ?? 
c o s ? ( 2 ?? ) =
1
9
 
sin ? ?? = ±
2
3
 
as m and n are co-prime natural numbers, 
?? =
2
3
 
i.e. ?? = 2 , ?? = 3 
So, the quadratic equation becomes 2 ?? 2
- 3 ?? + 1 = 0 whose roots are ?? = 1 , ?? =
1
2
( 1 ,
1
2
) 
lies on 5 ?? + 8 ?? = 9 
Q3 
Let sin
- 1
? ?? = A , sin
- 1
? ?? = B , sin
- 1
? ?? = C 
A + B + C = ?? 
( ?? + ?? )
2
- ?? 2
= 3 ???? 
?? 2
+ ?? 2
- ?? 2
= ???? 
?? 2
+ ?? 2
- ?? 2
2 ????
=
1
2
 
? c o s ? C =
1
2
 
sin ? C = ?? 
c o s ? C = v 1 - ?? 2
=
1
2
 
?? =
v 3
2
 
Q4 
?? = sin
- 1
? ( sin ? 5 ) = 5 - 2 ?? 
and ?? = c o s
- 1
? ( c o s ? 5 ) = 2 ?? - 5 
? ?? 2
+ ?? 2
= ( 5 - 2 ?? )
2
+ ( 2 ?? - 5 )
2
 
= 8 ?? 2
- 40 ?? + 50 
Numerical 2023 
Question:1
 
JEE Main 2023 (Online) 13th April Evening Shift 
 
Question:2  
 
JEE Main 2023 (Online) 13th April Morning Shift 
Question:3 
 
JEE Main 2023 (Online) 10th April Evening Shift 
Question:4 
 
JEE Main 2023 (Online) 25th January Morning Shift 
 
 
Numerical Answer Key 
 
1. Ans. (2)  
2. Ans. (4) 
3. Ans. (24)  
4. Ans. (2) 
 
Numerical Explanation 
Ans. 1 
 
 
 
 
Read More
209 videos|443 docs|143 tests

Top Courses for JEE

FAQs on Inverse Trigonometric Functions: JEE Mains Previous Year Questions (2021-2024) - Mathematics (Maths) for JEE Main & Advanced

1. What are the basic properties of inverse trigonometric functions?
Ans. The basic properties of inverse trigonometric functions include the principal value branches, range, domain, and periodicity of functions such as sin$^{-1}x$, cos$^{-1}x$, and tan$^{-1}x$.
2. How do we find the derivatives of inverse trigonometric functions?
Ans. To find the derivatives of inverse trigonometric functions, we can use the chain rule and the known derivatives of trigonometric functions. For example, the derivative of sin$^{-1}x$ is $\frac{1}{\sqrt{1-x^2}}$.
3. What are some common identities involving inverse trigonometric functions?
Ans. Some common identities involving inverse trigonometric functions include sin(sin$^{-1}x) = x$, cos(cos$^{-1}x) = x$, and tan(tan$^{-1}x) = x$. These identities help simplify expressions involving inverse trigonometric functions.
4. How do we solve equations involving inverse trigonometric functions?
Ans. To solve equations involving inverse trigonometric functions, we can apply the properties and identities of these functions. We can also use trigonometric identities to simplify the expressions and find the solutions.
5. Can inverse trigonometric functions be used to find angles in a triangle?
Ans. Yes, inverse trigonometric functions can be used to find angles in a triangle. By using the properties of inverse trigonometric functions, we can determine unknown angles in a triangle based on the given sides or angles.
209 videos|443 docs|143 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Important questions

,

shortcuts and tricks

,

ppt

,

Semester Notes

,

Sample Paper

,

MCQs

,

Viva Questions

,

Objective type Questions

,

Previous Year Questions with Solutions

,

past year papers

,

Inverse Trigonometric Functions: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

Free

,

Summary

,

study material

,

video lectures

,

Exam

,

mock tests for examination

,

pdf

,

practice quizzes

,

Inverse Trigonometric Functions: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

Inverse Trigonometric Functions: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

Extra Questions

;