JEE Exam  >  JEE Notes  >  Mock Tests for JEE Main and Advanced 2025  >  JEE Main 2024 February 1 Shift 1 Paper & Solutions

JEE Main 2024 February 1 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


   
    
 
  
 
 
 
 
 
 
 
 
SECTION-A 
1. A bag contains 8 balls, whose colours are either 
white or black. 4 balls are drawn at random 
without replacement and it was found that 2 balls 
are white and other 2 balls are black. The 
probability that the bag contains equal number of 
white and black balls is: 
 (1) 
2
5
 (2) 
2
7
 
 (3) 
1
7
  (4) 
1
5
 
 Ans. (2) 
Sol. 
 P(4W4B/2W2B) =  
 
(4 4 ) (2 2 /4 4 )
(2 6 ) (2 2 /2 6 ) (3 5 ) (2 2 /3 5 )
............. (6 2 ) (2 2 /6 2 )
P W B P W B W B
P W B P W B W B P W B P W B W B
P W B P W B W B
?
? ? ?
? ? ?
 
=
44
22
8
4
2 6 3 5 6 2
2 2 2 2 2 2
8 8 8
4 4 4
CC 1
5C
C C C C C C 1 1 1
...
5 C 5 C 5 C
?
?
? ? ?
? ? ? ? ? ?
 
= 
2
7
 
 
2. The value of the integral 
  
4
44
0
:
sin (2 ) cos (2 )
xdx
equals
xx
?
?
?
 
 (1) 
2
2
8
?
 (2) 
2
2
16
?
 
 (3) 
2
2
32
?
  (4) 
2
2
64
?
 
 Ans. (3) 
Sol.  
4
44
0
sin (2 ) cos (2 )
xdx
xx
?
?
?
 
 Let 2xt ? then 
1
2
dx dt ? 
 
2
44
0
2
44
0
2
44
0
2
44
0
4 2
4
0
1
4 sin cos
1 2
4
sin cos
22
1
2
4 sin cos
2
8 sin cos
sec
2
8 tan 1
tdt
I
tt
t dt
I
tt
dt
II
tt
dt
I
tt
tdt
I
t
?
?
?
?
?
?
??
?
?
?
?
?
??
?
??
??
?
? ? ? ?
? ? ?
? ? ? ?
? ? ? ?
??
?
?
?
?
?
?
?
?
?
?
 
 Let tant = y then sec
2
t dt = dy 
2
4
0
(1 )
2
81
?
?
?
?
?
y dy
I
y
?
 
2
2
0
2
1
1
y
dy
1
16
y
y
?
?
?
?
?
?
 
 Put 
1
yp
y
?? 
 
? ?
2
2
dp
I
16
p2
?
??
?
?
?
?
 
 
1
p
tan
16 2 2
?
?
??
?? ? ??
?
?? ??
?? ??
 
 
2
16 2
? I
?
 
Page 2


   
    
 
  
 
 
 
 
 
 
 
 
SECTION-A 
1. A bag contains 8 balls, whose colours are either 
white or black. 4 balls are drawn at random 
without replacement and it was found that 2 balls 
are white and other 2 balls are black. The 
probability that the bag contains equal number of 
white and black balls is: 
 (1) 
2
5
 (2) 
2
7
 
 (3) 
1
7
  (4) 
1
5
 
 Ans. (2) 
Sol. 
 P(4W4B/2W2B) =  
 
(4 4 ) (2 2 /4 4 )
(2 6 ) (2 2 /2 6 ) (3 5 ) (2 2 /3 5 )
............. (6 2 ) (2 2 /6 2 )
P W B P W B W B
P W B P W B W B P W B P W B W B
P W B P W B W B
?
? ? ?
? ? ?
 
=
44
22
8
4
2 6 3 5 6 2
2 2 2 2 2 2
8 8 8
4 4 4
CC 1
5C
C C C C C C 1 1 1
...
5 C 5 C 5 C
?
?
? ? ?
? ? ? ? ? ?
 
= 
2
7
 
 
2. The value of the integral 
  
4
44
0
:
sin (2 ) cos (2 )
xdx
equals
xx
?
?
?
 
 (1) 
2
2
8
?
 (2) 
2
2
16
?
 
 (3) 
2
2
32
?
  (4) 
2
2
64
?
 
 Ans. (3) 
Sol.  
4
44
0
sin (2 ) cos (2 )
xdx
xx
?
?
?
 
 Let 2xt ? then 
1
2
dx dt ? 
 
2
44
0
2
44
0
2
44
0
2
44
0
4 2
4
0
1
4 sin cos
1 2
4
sin cos
22
1
2
4 sin cos
2
8 sin cos
sec
2
8 tan 1
tdt
I
tt
t dt
I
tt
dt
II
tt
dt
I
tt
tdt
I
t
?
?
?
?
?
?
??
?
?
?
?
?
??
?
??
??
?
? ? ? ?
? ? ?
? ? ? ?
? ? ? ?
??
?
?
?
?
?
?
?
?
?
?
 
 Let tant = y then sec
2
t dt = dy 
2
4
0
(1 )
2
81
?
?
?
?
?
y dy
I
y
?
 
2
2
0
2
1
1
y
dy
1
16
y
y
?
?
?
?
?
?
 
 Put 
1
yp
y
?? 
 
? ?
2
2
dp
I
16
p2
?
??
?
?
?
?
 
 
1
p
tan
16 2 2
?
?
??
?? ? ??
?
?? ??
?? ??
 
 
2
16 2
? I
?
 
 
 
3. If A =
21
12
??
??
???
??
, B = 
10
11
??
??
??
, C = ABA
T
 and X 
= A
T
C
2
A, then det X is equal to : 
 (1) 243 
 (2) 729 
 (3) 27 
 (4) 891 
 Ans. (2) 
Sol. 
 
21
det( ) 3
12
10
det( ) 1
11
AA
BB
??
? ? ? ??
???
??
??
? ? ?
??
??
 
 Now C = ABA
T
 ?det(C) = (dct (A))
2 
x det(B) 
 9 C ? 
 Now |X| = |A
T
C
2
A| 
 = |A
T
| |C|
2
 |A| 
 = |A|
2
 |C|
2 
 = 9 x 81 
 = 729 
4. If tanA =
22
1
,tan
( 1) 1
?
? ? ? ?
x
B
x x x x x
  
 and 
 
? ?
1
3 2 1
2
tan ,0 , , ,
2
? ? ?
? ? ? ? ? C x x x A B C then
?
 
         A + B is equal to : 
 (1) C 
 (2) C ? ? 
 (3) 2 C ? ? 
 (4) 
2
C
?
? 
 Ans. (1) 
Sol. 
 Finding tan (A + B) we get 
 ? tan (A + B) =  
22
2
1
( 1) 1 tan tan
1
1 tan tan
1
1
x
x x x x x AB
AB
xx
?
? ? ? ? ?
?
?
?
??
 
 ? tan (A + B) = 
? ?
? ?
? ? ? ?
2
2
11 x x x
x x x
? ? ?
?
 
? ?
? ?
? ? ? ?
2
2
2
11
1
tan( ) tan
x x x
x x x
xx
A B C
xx
A B C
? ? ?
?
??
? ? ?
??
 
5. If n is the number of ways five different employees 
can sit into four indistinguishable offices where 
any office may have any number of persons 
including zero, then n is equal to: 
 (1) 47 
 (2) 53 
 (3) 51 
 (4) 43 
 Ans. (3) 
Sol. 
 Total ways to partition 5 into 4 parts are : 
 5, 0, 0, 0 ?1 way 
 4, 1, 0, 0 ?
5!
4!
? 5 ways 
 3, 2, 0, 0, 
5!
10
3!2!
?? ways 
 
5!
2,2,0,1 15
2!2!2!
?? ways 
 
3
5!
2,1,1,1 10
2!(1!) 3!
?? ways 
 
5!
3,1,1,0 10
3!2!
?? ways 
 Total ? 1+5+10+15+10+10 = 51 ways 
Page 3


   
    
 
  
 
 
 
 
 
 
 
 
SECTION-A 
1. A bag contains 8 balls, whose colours are either 
white or black. 4 balls are drawn at random 
without replacement and it was found that 2 balls 
are white and other 2 balls are black. The 
probability that the bag contains equal number of 
white and black balls is: 
 (1) 
2
5
 (2) 
2
7
 
 (3) 
1
7
  (4) 
1
5
 
 Ans. (2) 
Sol. 
 P(4W4B/2W2B) =  
 
(4 4 ) (2 2 /4 4 )
(2 6 ) (2 2 /2 6 ) (3 5 ) (2 2 /3 5 )
............. (6 2 ) (2 2 /6 2 )
P W B P W B W B
P W B P W B W B P W B P W B W B
P W B P W B W B
?
? ? ?
? ? ?
 
=
44
22
8
4
2 6 3 5 6 2
2 2 2 2 2 2
8 8 8
4 4 4
CC 1
5C
C C C C C C 1 1 1
...
5 C 5 C 5 C
?
?
? ? ?
? ? ? ? ? ?
 
= 
2
7
 
 
2. The value of the integral 
  
4
44
0
:
sin (2 ) cos (2 )
xdx
equals
xx
?
?
?
 
 (1) 
2
2
8
?
 (2) 
2
2
16
?
 
 (3) 
2
2
32
?
  (4) 
2
2
64
?
 
 Ans. (3) 
Sol.  
4
44
0
sin (2 ) cos (2 )
xdx
xx
?
?
?
 
 Let 2xt ? then 
1
2
dx dt ? 
 
2
44
0
2
44
0
2
44
0
2
44
0
4 2
4
0
1
4 sin cos
1 2
4
sin cos
22
1
2
4 sin cos
2
8 sin cos
sec
2
8 tan 1
tdt
I
tt
t dt
I
tt
dt
II
tt
dt
I
tt
tdt
I
t
?
?
?
?
?
?
??
?
?
?
?
?
??
?
??
??
?
? ? ? ?
? ? ?
? ? ? ?
? ? ? ?
??
?
?
?
?
?
?
?
?
?
?
 
 Let tant = y then sec
2
t dt = dy 
2
4
0
(1 )
2
81
?
?
?
?
?
y dy
I
y
?
 
2
2
0
2
1
1
y
dy
1
16
y
y
?
?
?
?
?
?
 
 Put 
1
yp
y
?? 
 
? ?
2
2
dp
I
16
p2
?
??
?
?
?
?
 
 
1
p
tan
16 2 2
?
?
??
?? ? ??
?
?? ??
?? ??
 
 
2
16 2
? I
?
 
 
 
3. If A =
21
12
??
??
???
??
, B = 
10
11
??
??
??
, C = ABA
T
 and X 
= A
T
C
2
A, then det X is equal to : 
 (1) 243 
 (2) 729 
 (3) 27 
 (4) 891 
 Ans. (2) 
Sol. 
 
21
det( ) 3
12
10
det( ) 1
11
AA
BB
??
? ? ? ??
???
??
??
? ? ?
??
??
 
 Now C = ABA
T
 ?det(C) = (dct (A))
2 
x det(B) 
 9 C ? 
 Now |X| = |A
T
C
2
A| 
 = |A
T
| |C|
2
 |A| 
 = |A|
2
 |C|
2 
 = 9 x 81 
 = 729 
4. If tanA =
22
1
,tan
( 1) 1
?
? ? ? ?
x
B
x x x x x
  
 and 
 
? ?
1
3 2 1
2
tan ,0 , , ,
2
? ? ?
? ? ? ? ? C x x x A B C then
?
 
         A + B is equal to : 
 (1) C 
 (2) C ? ? 
 (3) 2 C ? ? 
 (4) 
2
C
?
? 
 Ans. (1) 
Sol. 
 Finding tan (A + B) we get 
 ? tan (A + B) =  
22
2
1
( 1) 1 tan tan
1
1 tan tan
1
1
x
x x x x x AB
AB
xx
?
? ? ? ? ?
?
?
?
??
 
 ? tan (A + B) = 
? ?
? ?
? ? ? ?
2
2
11 x x x
x x x
? ? ?
?
 
? ?
? ?
? ? ? ?
2
2
2
11
1
tan( ) tan
x x x
x x x
xx
A B C
xx
A B C
? ? ?
?
??
? ? ?
??
 
5. If n is the number of ways five different employees 
can sit into four indistinguishable offices where 
any office may have any number of persons 
including zero, then n is equal to: 
 (1) 47 
 (2) 53 
 (3) 51 
 (4) 43 
 Ans. (3) 
Sol. 
 Total ways to partition 5 into 4 parts are : 
 5, 0, 0, 0 ?1 way 
 4, 1, 0, 0 ?
5!
4!
? 5 ways 
 3, 2, 0, 0, 
5!
10
3!2!
?? ways 
 
5!
2,2,0,1 15
2!2!2!
?? ways 
 
3
5!
2,1,1,1 10
2!(1!) 3!
?? ways 
 
5!
3,1,1,0 10
3!2!
?? ways 
 Total ? 1+5+10+15+10+10 = 51 ways 
 
 
 
6. LetS={ : 1 1 z C z ? ? ? and
? ?
? ? ? ? 2 1 2 2 z z i z z ? ? ? ? ? }. Let z
1
, z
2
 
S ? be such that 
12
max min
zs zs
z z and z z
? ?
?? . 
Then 
2
12
2zz ? equals : 
 (1) 1 (2) 4 
 (3) 3  (4) 2 
 Ans. (4) 
Sol. Let Z = x + iy 
 Then (x - 1)
2
 + y
2
 = 1     ? (1) 
 & 
? ?
? ? 2 1 2 (2 ) 2 2
( 2 1) 2 (2)
x i iy
xy
? ? ?
? ? ? ? ?
 
 Solving (1) & (2) we get 
 Either x = 1 or 
1
(3)
22
x??
?
 
 On solving (3) with (2) we get 
 For x = 1 ?y = 1 ? Z
2
 = 1 + i 
 & for 
 
1
1 1 1
21
2 2 2 2 2
i
x y Z
??
? ? ? ? ? ? ? ?
??
? ??
 
 Now  
 
? ?
2
12
2
2
2
1
1 2 (1 )
2
2
2
zz
ii
?
??
? ? ? ? ?
??
??
?
?
 
7. Let the median and the mean deviation about the 
median of 7 observation 170, 125, 230, 190, 210, a, b 
be 170 and 
205
7
respectively. Then the mean 
deviation about the mean of these 7 observations is : 
 (1) 31 
 (2) 28 
 (3) 30 
 (4) 32 
 Ans. (3) 
 
Sol. Median = 170 ?125, a, b, 170, 190, 210, 230 
 Mean deviation about 
 Median = 
 
0 45 60 20 40 170 170 205
77
ab ? ? ? ? ? ? ? ?
?
 
 ?a + b = 300 
 Mean =  
170 125 230 190 210
175
7
ab ? ? ? ? ? ?
?
 
 Mean deviation  
 About mean =  
 
50 175 175 5 15 35 55
7
ab ? ? ? ? ? ? ? ?
 = 30 
8. Let 
ˆˆ ˆ ˆ ˆ ˆ
5 3 , 2 4 a i j k b i j k ? ? ? ? ? ? ? and 
 
? ? ? ? ? ?
ˆˆˆ
. c a b i i i ? ? ? ? ? Then 
? ?
ˆ ˆˆ
c i j k ? ? ? ? is 
equal to 
 
         (1) –12  (2) –10 
 (3) –13  (4) –15 
 Ans. (1) 
Sol. 
ˆ ˆ
53 ? ? ? ? a i j k 
 
ˆ ˆˆ
24 ? ? ? b i j k 
 
? ? ? ?
ˆ ˆ ˆ
() ? ? ? ? ? ? a b i a i b b i a 
 5 ? ? ? ba 
 
? ? ? ? ? ?
ˆˆ
5 ? ? ? ? ? b a i i 
 
? ? ? ?
ˆ ˆ ˆ ˆ
11 23 ? ? ? ? ? j k i i 
 
? ?
ˆ ˆˆ
11 23 ? ? ? k j i 
 
? ?
ˆ ˆ
11 23 ??jk 
 
? ?
ˆ ˆˆ
. 11 23 12 ? ? ? ? ? ? ? c i j k 
 
Page 4


   
    
 
  
 
 
 
 
 
 
 
 
SECTION-A 
1. A bag contains 8 balls, whose colours are either 
white or black. 4 balls are drawn at random 
without replacement and it was found that 2 balls 
are white and other 2 balls are black. The 
probability that the bag contains equal number of 
white and black balls is: 
 (1) 
2
5
 (2) 
2
7
 
 (3) 
1
7
  (4) 
1
5
 
 Ans. (2) 
Sol. 
 P(4W4B/2W2B) =  
 
(4 4 ) (2 2 /4 4 )
(2 6 ) (2 2 /2 6 ) (3 5 ) (2 2 /3 5 )
............. (6 2 ) (2 2 /6 2 )
P W B P W B W B
P W B P W B W B P W B P W B W B
P W B P W B W B
?
? ? ?
? ? ?
 
=
44
22
8
4
2 6 3 5 6 2
2 2 2 2 2 2
8 8 8
4 4 4
CC 1
5C
C C C C C C 1 1 1
...
5 C 5 C 5 C
?
?
? ? ?
? ? ? ? ? ?
 
= 
2
7
 
 
2. The value of the integral 
  
4
44
0
:
sin (2 ) cos (2 )
xdx
equals
xx
?
?
?
 
 (1) 
2
2
8
?
 (2) 
2
2
16
?
 
 (3) 
2
2
32
?
  (4) 
2
2
64
?
 
 Ans. (3) 
Sol.  
4
44
0
sin (2 ) cos (2 )
xdx
xx
?
?
?
 
 Let 2xt ? then 
1
2
dx dt ? 
 
2
44
0
2
44
0
2
44
0
2
44
0
4 2
4
0
1
4 sin cos
1 2
4
sin cos
22
1
2
4 sin cos
2
8 sin cos
sec
2
8 tan 1
tdt
I
tt
t dt
I
tt
dt
II
tt
dt
I
tt
tdt
I
t
?
?
?
?
?
?
??
?
?
?
?
?
??
?
??
??
?
? ? ? ?
? ? ?
? ? ? ?
? ? ? ?
??
?
?
?
?
?
?
?
?
?
?
 
 Let tant = y then sec
2
t dt = dy 
2
4
0
(1 )
2
81
?
?
?
?
?
y dy
I
y
?
 
2
2
0
2
1
1
y
dy
1
16
y
y
?
?
?
?
?
?
 
 Put 
1
yp
y
?? 
 
? ?
2
2
dp
I
16
p2
?
??
?
?
?
?
 
 
1
p
tan
16 2 2
?
?
??
?? ? ??
?
?? ??
?? ??
 
 
2
16 2
? I
?
 
 
 
3. If A =
21
12
??
??
???
??
, B = 
10
11
??
??
??
, C = ABA
T
 and X 
= A
T
C
2
A, then det X is equal to : 
 (1) 243 
 (2) 729 
 (3) 27 
 (4) 891 
 Ans. (2) 
Sol. 
 
21
det( ) 3
12
10
det( ) 1
11
AA
BB
??
? ? ? ??
???
??
??
? ? ?
??
??
 
 Now C = ABA
T
 ?det(C) = (dct (A))
2 
x det(B) 
 9 C ? 
 Now |X| = |A
T
C
2
A| 
 = |A
T
| |C|
2
 |A| 
 = |A|
2
 |C|
2 
 = 9 x 81 
 = 729 
4. If tanA =
22
1
,tan
( 1) 1
?
? ? ? ?
x
B
x x x x x
  
 and 
 
? ?
1
3 2 1
2
tan ,0 , , ,
2
? ? ?
? ? ? ? ? C x x x A B C then
?
 
         A + B is equal to : 
 (1) C 
 (2) C ? ? 
 (3) 2 C ? ? 
 (4) 
2
C
?
? 
 Ans. (1) 
Sol. 
 Finding tan (A + B) we get 
 ? tan (A + B) =  
22
2
1
( 1) 1 tan tan
1
1 tan tan
1
1
x
x x x x x AB
AB
xx
?
? ? ? ? ?
?
?
?
??
 
 ? tan (A + B) = 
? ?
? ?
? ? ? ?
2
2
11 x x x
x x x
? ? ?
?
 
? ?
? ?
? ? ? ?
2
2
2
11
1
tan( ) tan
x x x
x x x
xx
A B C
xx
A B C
? ? ?
?
??
? ? ?
??
 
5. If n is the number of ways five different employees 
can sit into four indistinguishable offices where 
any office may have any number of persons 
including zero, then n is equal to: 
 (1) 47 
 (2) 53 
 (3) 51 
 (4) 43 
 Ans. (3) 
Sol. 
 Total ways to partition 5 into 4 parts are : 
 5, 0, 0, 0 ?1 way 
 4, 1, 0, 0 ?
5!
4!
? 5 ways 
 3, 2, 0, 0, 
5!
10
3!2!
?? ways 
 
5!
2,2,0,1 15
2!2!2!
?? ways 
 
3
5!
2,1,1,1 10
2!(1!) 3!
?? ways 
 
5!
3,1,1,0 10
3!2!
?? ways 
 Total ? 1+5+10+15+10+10 = 51 ways 
 
 
 
6. LetS={ : 1 1 z C z ? ? ? and
? ?
? ? ? ? 2 1 2 2 z z i z z ? ? ? ? ? }. Let z
1
, z
2
 
S ? be such that 
12
max min
zs zs
z z and z z
? ?
?? . 
Then 
2
12
2zz ? equals : 
 (1) 1 (2) 4 
 (3) 3  (4) 2 
 Ans. (4) 
Sol. Let Z = x + iy 
 Then (x - 1)
2
 + y
2
 = 1     ? (1) 
 & 
? ?
? ? 2 1 2 (2 ) 2 2
( 2 1) 2 (2)
x i iy
xy
? ? ?
? ? ? ? ?
 
 Solving (1) & (2) we get 
 Either x = 1 or 
1
(3)
22
x??
?
 
 On solving (3) with (2) we get 
 For x = 1 ?y = 1 ? Z
2
 = 1 + i 
 & for 
 
1
1 1 1
21
2 2 2 2 2
i
x y Z
??
? ? ? ? ? ? ? ?
??
? ??
 
 Now  
 
? ?
2
12
2
2
2
1
1 2 (1 )
2
2
2
zz
ii
?
??
? ? ? ? ?
??
??
?
?
 
7. Let the median and the mean deviation about the 
median of 7 observation 170, 125, 230, 190, 210, a, b 
be 170 and 
205
7
respectively. Then the mean 
deviation about the mean of these 7 observations is : 
 (1) 31 
 (2) 28 
 (3) 30 
 (4) 32 
 Ans. (3) 
 
Sol. Median = 170 ?125, a, b, 170, 190, 210, 230 
 Mean deviation about 
 Median = 
 
0 45 60 20 40 170 170 205
77
ab ? ? ? ? ? ? ? ?
?
 
 ?a + b = 300 
 Mean =  
170 125 230 190 210
175
7
ab ? ? ? ? ? ?
?
 
 Mean deviation  
 About mean =  
 
50 175 175 5 15 35 55
7
ab ? ? ? ? ? ? ? ?
 = 30 
8. Let 
ˆˆ ˆ ˆ ˆ ˆ
5 3 , 2 4 a i j k b i j k ? ? ? ? ? ? ? and 
 
? ? ? ? ? ?
ˆˆˆ
. c a b i i i ? ? ? ? ? Then 
? ?
ˆ ˆˆ
c i j k ? ? ? ? is 
equal to 
 
         (1) –12  (2) –10 
 (3) –13  (4) –15 
 Ans. (1) 
Sol. 
ˆ ˆ
53 ? ? ? ? a i j k 
 
ˆ ˆˆ
24 ? ? ? b i j k 
 
? ? ? ?
ˆ ˆ ˆ
() ? ? ? ? ? ? a b i a i b b i a 
 5 ? ? ? ba 
 
? ? ? ? ? ?
ˆˆ
5 ? ? ? ? ? b a i i 
 
? ? ? ?
ˆ ˆ ˆ ˆ
11 23 ? ? ? ? ? j k i i 
 
? ?
ˆ ˆˆ
11 23 ? ? ? k j i 
 
? ?
ˆ ˆ
11 23 ??jk 
 
? ?
ˆ ˆˆ
. 11 23 12 ? ? ? ? ? ? ? c i j k 
 
 
 
9. Let S = { :( 3 2) ( 3 2) 10}.
xx
xR ? ? ? ? ? 
Then the number of elements in S is : 
 (1) 4 (2) 0 
 (3) 2  (4) 1 
 Ans. (3) 
Sol. 
? ? ? ?
xx
3 2 3 2 10 ? ? ? ? 
 Let 
? ?
x
3 2 t ?? 
 
1
t 10
t
?? 
 t
2
 – 10t + 1 = 0 
 
10 100 4
t 5 2 6
2
??
? ? ? 
  
? ? ? ?
x2
3 2 3 2 ? ? ? 
 x = 2 or x = –2 
 Number of solutions = 2 
10. The area enclosed by the curves xy + 4y = 16 and 
x + y = 6 is equal to : 
(1) 28 – 30 log 2
e
 (2) 30 – 28 log 2
e
 
 (3) 30 – 32 log 2
e
 (4) 32 – 30 log 2
e
 
 Ans. (3) 
Sol. xy + 4y = 16                      ,        x + y = 6 
 y(x + 4) = 16 ____(1)         ,        x + y = 6___(2) 
 on solving, (1) & (2) 
 we get x = 4, x = –2 
 
–4
–2 4 (6,0)
(0,6)
 
 Area = 
? ?
4
2
16
6
4
30 32ln2
x dx
x
?
?? ??
??
?? ??
?
?? ??
??
?
  
11. Let f : R ? R  and g : R ? R be defined as  
f(x) = 
e
x
log x , x 0
e , x 0
?
? ?
?
?
? ?
?
 and 
 g(x) = 
x
x , x 0
e , x 0
? ?
?
?
? ?
?
. Then, gof : R ? R is : 
 (1) one-one but not onto 
 (2) neither one-one nor onto 
 (3) onto but not one-one 
 (4) both one-one and onto 
 Ans. (2) 
Sol. 
 g(f(x)) = 
()
( ), ( ) 0
, ( ) 0
fx
f x f x
e f x
? ?
?
?
?
 
 g(f(x)) = 
? ?
?
ln
, ,0
,(0,1)
ln , 1,
x
x
e
e
x
?
?
??
?
?
?
?
? ?
? ?
?
 
  
(1,0)
(0,1)
 
 Graph of g(f(x)) 
 g(f(x)) ?Many one into  
12. If the system of equations 
 2x + 3y – z = 5  
 x + ?y + 3z = –4 
 3x – y + ?z = 7 
 has infinitely many solutions, then 13 ?? is equal 
to 
 (1) 1110 (2) 1120 
 (3) 1210  (4) 1220 
 Ans. (2) 
Page 5


   
    
 
  
 
 
 
 
 
 
 
 
SECTION-A 
1. A bag contains 8 balls, whose colours are either 
white or black. 4 balls are drawn at random 
without replacement and it was found that 2 balls 
are white and other 2 balls are black. The 
probability that the bag contains equal number of 
white and black balls is: 
 (1) 
2
5
 (2) 
2
7
 
 (3) 
1
7
  (4) 
1
5
 
 Ans. (2) 
Sol. 
 P(4W4B/2W2B) =  
 
(4 4 ) (2 2 /4 4 )
(2 6 ) (2 2 /2 6 ) (3 5 ) (2 2 /3 5 )
............. (6 2 ) (2 2 /6 2 )
P W B P W B W B
P W B P W B W B P W B P W B W B
P W B P W B W B
?
? ? ?
? ? ?
 
=
44
22
8
4
2 6 3 5 6 2
2 2 2 2 2 2
8 8 8
4 4 4
CC 1
5C
C C C C C C 1 1 1
...
5 C 5 C 5 C
?
?
? ? ?
? ? ? ? ? ?
 
= 
2
7
 
 
2. The value of the integral 
  
4
44
0
:
sin (2 ) cos (2 )
xdx
equals
xx
?
?
?
 
 (1) 
2
2
8
?
 (2) 
2
2
16
?
 
 (3) 
2
2
32
?
  (4) 
2
2
64
?
 
 Ans. (3) 
Sol.  
4
44
0
sin (2 ) cos (2 )
xdx
xx
?
?
?
 
 Let 2xt ? then 
1
2
dx dt ? 
 
2
44
0
2
44
0
2
44
0
2
44
0
4 2
4
0
1
4 sin cos
1 2
4
sin cos
22
1
2
4 sin cos
2
8 sin cos
sec
2
8 tan 1
tdt
I
tt
t dt
I
tt
dt
II
tt
dt
I
tt
tdt
I
t
?
?
?
?
?
?
??
?
?
?
?
?
??
?
??
??
?
? ? ? ?
? ? ?
? ? ? ?
? ? ? ?
??
?
?
?
?
?
?
?
?
?
?
 
 Let tant = y then sec
2
t dt = dy 
2
4
0
(1 )
2
81
?
?
?
?
?
y dy
I
y
?
 
2
2
0
2
1
1
y
dy
1
16
y
y
?
?
?
?
?
?
 
 Put 
1
yp
y
?? 
 
? ?
2
2
dp
I
16
p2
?
??
?
?
?
?
 
 
1
p
tan
16 2 2
?
?
??
?? ? ??
?
?? ??
?? ??
 
 
2
16 2
? I
?
 
 
 
3. If A =
21
12
??
??
???
??
, B = 
10
11
??
??
??
, C = ABA
T
 and X 
= A
T
C
2
A, then det X is equal to : 
 (1) 243 
 (2) 729 
 (3) 27 
 (4) 891 
 Ans. (2) 
Sol. 
 
21
det( ) 3
12
10
det( ) 1
11
AA
BB
??
? ? ? ??
???
??
??
? ? ?
??
??
 
 Now C = ABA
T
 ?det(C) = (dct (A))
2 
x det(B) 
 9 C ? 
 Now |X| = |A
T
C
2
A| 
 = |A
T
| |C|
2
 |A| 
 = |A|
2
 |C|
2 
 = 9 x 81 
 = 729 
4. If tanA =
22
1
,tan
( 1) 1
?
? ? ? ?
x
B
x x x x x
  
 and 
 
? ?
1
3 2 1
2
tan ,0 , , ,
2
? ? ?
? ? ? ? ? C x x x A B C then
?
 
         A + B is equal to : 
 (1) C 
 (2) C ? ? 
 (3) 2 C ? ? 
 (4) 
2
C
?
? 
 Ans. (1) 
Sol. 
 Finding tan (A + B) we get 
 ? tan (A + B) =  
22
2
1
( 1) 1 tan tan
1
1 tan tan
1
1
x
x x x x x AB
AB
xx
?
? ? ? ? ?
?
?
?
??
 
 ? tan (A + B) = 
? ?
? ?
? ? ? ?
2
2
11 x x x
x x x
? ? ?
?
 
? ?
? ?
? ? ? ?
2
2
2
11
1
tan( ) tan
x x x
x x x
xx
A B C
xx
A B C
? ? ?
?
??
? ? ?
??
 
5. If n is the number of ways five different employees 
can sit into four indistinguishable offices where 
any office may have any number of persons 
including zero, then n is equal to: 
 (1) 47 
 (2) 53 
 (3) 51 
 (4) 43 
 Ans. (3) 
Sol. 
 Total ways to partition 5 into 4 parts are : 
 5, 0, 0, 0 ?1 way 
 4, 1, 0, 0 ?
5!
4!
? 5 ways 
 3, 2, 0, 0, 
5!
10
3!2!
?? ways 
 
5!
2,2,0,1 15
2!2!2!
?? ways 
 
3
5!
2,1,1,1 10
2!(1!) 3!
?? ways 
 
5!
3,1,1,0 10
3!2!
?? ways 
 Total ? 1+5+10+15+10+10 = 51 ways 
 
 
 
6. LetS={ : 1 1 z C z ? ? ? and
? ?
? ? ? ? 2 1 2 2 z z i z z ? ? ? ? ? }. Let z
1
, z
2
 
S ? be such that 
12
max min
zs zs
z z and z z
? ?
?? . 
Then 
2
12
2zz ? equals : 
 (1) 1 (2) 4 
 (3) 3  (4) 2 
 Ans. (4) 
Sol. Let Z = x + iy 
 Then (x - 1)
2
 + y
2
 = 1     ? (1) 
 & 
? ?
? ? 2 1 2 (2 ) 2 2
( 2 1) 2 (2)
x i iy
xy
? ? ?
? ? ? ? ?
 
 Solving (1) & (2) we get 
 Either x = 1 or 
1
(3)
22
x??
?
 
 On solving (3) with (2) we get 
 For x = 1 ?y = 1 ? Z
2
 = 1 + i 
 & for 
 
1
1 1 1
21
2 2 2 2 2
i
x y Z
??
? ? ? ? ? ? ? ?
??
? ??
 
 Now  
 
? ?
2
12
2
2
2
1
1 2 (1 )
2
2
2
zz
ii
?
??
? ? ? ? ?
??
??
?
?
 
7. Let the median and the mean deviation about the 
median of 7 observation 170, 125, 230, 190, 210, a, b 
be 170 and 
205
7
respectively. Then the mean 
deviation about the mean of these 7 observations is : 
 (1) 31 
 (2) 28 
 (3) 30 
 (4) 32 
 Ans. (3) 
 
Sol. Median = 170 ?125, a, b, 170, 190, 210, 230 
 Mean deviation about 
 Median = 
 
0 45 60 20 40 170 170 205
77
ab ? ? ? ? ? ? ? ?
?
 
 ?a + b = 300 
 Mean =  
170 125 230 190 210
175
7
ab ? ? ? ? ? ?
?
 
 Mean deviation  
 About mean =  
 
50 175 175 5 15 35 55
7
ab ? ? ? ? ? ? ? ?
 = 30 
8. Let 
ˆˆ ˆ ˆ ˆ ˆ
5 3 , 2 4 a i j k b i j k ? ? ? ? ? ? ? and 
 
? ? ? ? ? ?
ˆˆˆ
. c a b i i i ? ? ? ? ? Then 
? ?
ˆ ˆˆ
c i j k ? ? ? ? is 
equal to 
 
         (1) –12  (2) –10 
 (3) –13  (4) –15 
 Ans. (1) 
Sol. 
ˆ ˆ
53 ? ? ? ? a i j k 
 
ˆ ˆˆ
24 ? ? ? b i j k 
 
? ? ? ?
ˆ ˆ ˆ
() ? ? ? ? ? ? a b i a i b b i a 
 5 ? ? ? ba 
 
? ? ? ? ? ?
ˆˆ
5 ? ? ? ? ? b a i i 
 
? ? ? ?
ˆ ˆ ˆ ˆ
11 23 ? ? ? ? ? j k i i 
 
? ?
ˆ ˆˆ
11 23 ? ? ? k j i 
 
? ?
ˆ ˆ
11 23 ??jk 
 
? ?
ˆ ˆˆ
. 11 23 12 ? ? ? ? ? ? ? c i j k 
 
 
 
9. Let S = { :( 3 2) ( 3 2) 10}.
xx
xR ? ? ? ? ? 
Then the number of elements in S is : 
 (1) 4 (2) 0 
 (3) 2  (4) 1 
 Ans. (3) 
Sol. 
? ? ? ?
xx
3 2 3 2 10 ? ? ? ? 
 Let 
? ?
x
3 2 t ?? 
 
1
t 10
t
?? 
 t
2
 – 10t + 1 = 0 
 
10 100 4
t 5 2 6
2
??
? ? ? 
  
? ? ? ?
x2
3 2 3 2 ? ? ? 
 x = 2 or x = –2 
 Number of solutions = 2 
10. The area enclosed by the curves xy + 4y = 16 and 
x + y = 6 is equal to : 
(1) 28 – 30 log 2
e
 (2) 30 – 28 log 2
e
 
 (3) 30 – 32 log 2
e
 (4) 32 – 30 log 2
e
 
 Ans. (3) 
Sol. xy + 4y = 16                      ,        x + y = 6 
 y(x + 4) = 16 ____(1)         ,        x + y = 6___(2) 
 on solving, (1) & (2) 
 we get x = 4, x = –2 
 
–4
–2 4 (6,0)
(0,6)
 
 Area = 
? ?
4
2
16
6
4
30 32ln2
x dx
x
?
?? ??
??
?? ??
?
?? ??
??
?
  
11. Let f : R ? R  and g : R ? R be defined as  
f(x) = 
e
x
log x , x 0
e , x 0
?
? ?
?
?
? ?
?
 and 
 g(x) = 
x
x , x 0
e , x 0
? ?
?
?
? ?
?
. Then, gof : R ? R is : 
 (1) one-one but not onto 
 (2) neither one-one nor onto 
 (3) onto but not one-one 
 (4) both one-one and onto 
 Ans. (2) 
Sol. 
 g(f(x)) = 
()
( ), ( ) 0
, ( ) 0
fx
f x f x
e f x
? ?
?
?
?
 
 g(f(x)) = 
? ?
?
ln
, ,0
,(0,1)
ln , 1,
x
x
e
e
x
?
?
??
?
?
?
?
? ?
? ?
?
 
  
(1,0)
(0,1)
 
 Graph of g(f(x)) 
 g(f(x)) ?Many one into  
12. If the system of equations 
 2x + 3y – z = 5  
 x + ?y + 3z = –4 
 3x – y + ?z = 7 
 has infinitely many solutions, then 13 ?? is equal 
to 
 (1) 1110 (2) 1120 
 (3) 1210  (4) 1220 
 Ans. (2) 
 
 
 
Sol. Using family of planes 
 2x + 3y –z – 5 = k
1
 (x + ? y + 3z + 4) + k
2 
(3x – y 
+ ? z - 7) 
 2 = k
1
 + 3k
2
, 3 = k
1
? - k
2
, -1 = 3k
1
 + ? k
2
, -5 = 
4k
1
 – 7k
2
 
 On solving we get  
 
21
13 1 16
, , 70,
19 19 13
kk ??
??
? ? ? ? ? 
 13 ? ? = 13 (-70)
16
13
1120
? ??
??
??
?
 
13. For 0 < ? < ?/2, if the eccentricity of the hyperbola 
x
2
 – y
2
cosec
2
? = 5 is 7 times eccentricity of the 
ellipse x
2
 cosec
2
? + y
2
 = 5, then the value of ? is : 
 (1) 
6
?
 (2) 
5
12
?
 
 (3) 
3
?
  (4) 
4
?
 
 Ans. (3) 
Sol. 
 
2
2
1 sin
1 sin
h
c
e
e
?
?
??
??
 
 7
hc
ee ? 
 
22
2
1 sin 7(1 sin )
63
sin
84
3
sin
2
3
??
?
?
?
?
? ? ?
??
?
?
 
14. Let y = y(x) be the solution of the differential 
equation 
dy
dx
 = 2x (x + y)
3
 – x (x + y) – 1, y(0) = 1. 
Then, 
2
11
y
22
?? ??
?
?? ??
?? ??
 equals : 
 (1) 
4
4e ?
 (2) 
3
3e ?
 
 (3) 
2
1e ?
  (4) 
1
2e ?
 
 Ans. (4) 
Sol. 
3
2 ( ) ( ) 1 ? ? ? ? ?
dy
x x y x x y
dx
 
 ?? xyt 
 
3
1 2 1 ? ? ? ?
dt
xt xt
dx
 
 
3
2
?
?
dt
xdx
tt
 
 
42
tdt
xdx
2t t
?
?
 
 Let 
2
? tz  
 
? ?
2
dz
xdx
2 2z z
?
?
??
 
 
1
4
2
?
??
?
??
??
??
dz
xdx
zz
 
  
2
1
2
ln
?
??
z
xk
z
 
  
1
2
?
?
z
e
 
15. Let f : R ? R be defined as  
 f(x) = 
2
2
a bcos2x
; x 0
x
x cx 2 ; 0 x 1
2x 1 ; x 1
? ?
?
?
?
?
? ? ? ?
?
?
??
?
?
?
 
 If f is continuous everywhere in R and m is the 
number of points where f is NOT differential then 
m + a + b + c equals : 
 (1) 1 (2) 4 
 (3) 3  (4) 2 
 Ans. (4) 
 
Read More
357 docs|148 tests

Top Courses for JEE

FAQs on JEE Main 2024 February 1 Shift 1 Paper & Solutions - Mock Tests for JEE Main and Advanced 2025

1. What was the difficulty level of JEE Main 2024 February 1 Shift 1 Paper?
Ans. The difficulty level of JEE Main 2024 February 1 Shift 1 Paper was moderate.
2. How many questions were there in JEE Main 2024 February 1 Shift 1 Paper?
Ans. There were a total of 90 questions in JEE Main 2024 February 1 Shift 1 Paper.
3. Were there any changes in the exam pattern for JEE Main 2024 February 1 Shift 1 Paper?
Ans. No, there were no changes in the exam pattern for JEE Main 2024 February 1 Shift 1 Paper compared to previous years.
4. What are the best preparation strategies for JEE Main 2024 February 1 Shift 1 Paper?
Ans. Some of the best preparation strategies for JEE Main include solving previous years' question papers, practicing mock tests, and focusing on strengthening concepts.
5. Are there any specific topics that were more heavily weighted in JEE Main 2024 February 1 Shift 1 Paper?
Ans. The distribution of topics in JEE Main 2024 February 1 Shift 1 Paper was balanced across all subjects, with no specific topic being more heavily weighted.
357 docs|148 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

study material

,

Viva Questions

,

Sample Paper

,

MCQs

,

JEE Main 2024 February 1 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Semester Notes

,

Important questions

,

JEE Main 2024 February 1 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

mock tests for examination

,

Objective type Questions

,

practice quizzes

,

Free

,

Summary

,

pdf

,

shortcuts and tricks

,

Previous Year Questions with Solutions

,

Extra Questions

,

JEE Main 2024 February 1 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

ppt

,

Exam

,

video lectures

,

past year papers

;