JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Trigonometric Ratios, Functions & Equations: JEE Mains Previous Year Questions (2021-2024)

Trigonometric Ratios, Functions & Equations: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


JEE Mains Previous Year Questions 
(2021-2024): Trigonometric Ratios, 
Functions & Equations 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If t a n ? A =
1
v ?? ( ?? 2
+ ?? + 1 )
, t a n ? ?? =
v ?? v ?? 2
+ ?? + 1
 and t a n ? ?? = ( ?? - 3
+ ?? - 2
+ ?? - 1
)
1
2
, 0 < ?? , ?? , ?? <
?? 2
, 
then A + B is equal to : 
(1) C 
(2) ?? - ?? 
(3) 2 ?? - ?? 
(4) 
?? 2
- ?? 
Q2 - 2024 (30 Jan Shift 2) 
For ?? , ?? ? ( 0 ,
?? 2
), let 3 s i n ? ( ?? + ?? ) = 2 s i n ? ( ?? - ?? ) and a real number k be such that 
t a n ? ?? = kt a n ? ?? . Then the value of ?? is equal to : 
(1) -
2
3
 
(2) -5 
(3) 
2
3
 
(4) 5 
Q3 - 2024 (01 Feb Shift 2) 
The number of solutions of the equation 4 sin
2
? ?? - 4 c o s
3
? ?? + 9 - 4 c o s ? ?? = 0 ; ?? ? [ - 2 ?? , 2 ?? ] 
is : 
(1) 1  
(2) 3 
(3) 2 
Page 2


JEE Mains Previous Year Questions 
(2021-2024): Trigonometric Ratios, 
Functions & Equations 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If t a n ? A =
1
v ?? ( ?? 2
+ ?? + 1 )
, t a n ? ?? =
v ?? v ?? 2
+ ?? + 1
 and t a n ? ?? = ( ?? - 3
+ ?? - 2
+ ?? - 1
)
1
2
, 0 < ?? , ?? , ?? <
?? 2
, 
then A + B is equal to : 
(1) C 
(2) ?? - ?? 
(3) 2 ?? - ?? 
(4) 
?? 2
- ?? 
Q2 - 2024 (30 Jan Shift 2) 
For ?? , ?? ? ( 0 ,
?? 2
), let 3 s i n ? ( ?? + ?? ) = 2 s i n ? ( ?? - ?? ) and a real number k be such that 
t a n ? ?? = kt a n ? ?? . Then the value of ?? is equal to : 
(1) -
2
3
 
(2) -5 
(3) 
2
3
 
(4) 5 
Q3 - 2024 (01 Feb Shift 2) 
The number of solutions of the equation 4 sin
2
? ?? - 4 c o s
3
? ?? + 9 - 4 c o s ? ?? = 0 ; ?? ? [ - 2 ?? , 2 ?? ] 
is : 
(1) 1  
(2) 3 
(3) 2 
(4) 0 
 
 
Q4 - 2024 (27 Jan Shift 1) 
Let the set of all ?? ? ?? such that the equation c o s ? 2 ?? + ?? sin ? ?? = 2 ?? - 7 has a solution be 
[ ?? , ?? ] and ?? = t a n ? 9
°
- t a n ? 27
°
-
1
c o t ? 63
°
+ t a n ? 81
°
, then pqr is equal to 
Q5 - 2024 (27 Jan Shift 2) 
If 2 t a n
2
? ?? - 5 s e c ? ?? = 1 has exactly 7 solutions in the interval [ 0 ,
????
2
], for the least value of 
?? ? ?? then ?
k = 1
n
?
k
2
k
 is equal to : 
(1) 
1
2
15
( 2
14
- 14 ) 
(2) 
1
2
14
( 2
15
- 15 ) 
(3) 1 -
15
2
13
 
(4) 
1
2
13
( 2
14
- 15 ) 
Q6 - 2024 (29 Jan Shift 1) 
If ?? , -
?? 2
< ?? <
?? 2
 is the solution of 4 c o s ? ?? + 5 s i n ? ?? = 1, then the value of t a n ? ?? is 
(1) 
10 - v 10
6
 
(2) 
10 - v 10
12
 
(3) 
v 10 - 10
12
 
(4) 
v 10 - 10
6
 
Q7- 2024 (29 Jan Shift 2) 
The sum of the solutions ?? ? R of the equation 
3 c o s ? 2 ?? + c o s
3
? 2 ?? c o s
6
? ?? - s i n
6
? ?? = ?? 3
- ?? 2
+ 6 is 
(1) 0 
(2) 1 
Page 3


JEE Mains Previous Year Questions 
(2021-2024): Trigonometric Ratios, 
Functions & Equations 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If t a n ? A =
1
v ?? ( ?? 2
+ ?? + 1 )
, t a n ? ?? =
v ?? v ?? 2
+ ?? + 1
 and t a n ? ?? = ( ?? - 3
+ ?? - 2
+ ?? - 1
)
1
2
, 0 < ?? , ?? , ?? <
?? 2
, 
then A + B is equal to : 
(1) C 
(2) ?? - ?? 
(3) 2 ?? - ?? 
(4) 
?? 2
- ?? 
Q2 - 2024 (30 Jan Shift 2) 
For ?? , ?? ? ( 0 ,
?? 2
), let 3 s i n ? ( ?? + ?? ) = 2 s i n ? ( ?? - ?? ) and a real number k be such that 
t a n ? ?? = kt a n ? ?? . Then the value of ?? is equal to : 
(1) -
2
3
 
(2) -5 
(3) 
2
3
 
(4) 5 
Q3 - 2024 (01 Feb Shift 2) 
The number of solutions of the equation 4 sin
2
? ?? - 4 c o s
3
? ?? + 9 - 4 c o s ? ?? = 0 ; ?? ? [ - 2 ?? , 2 ?? ] 
is : 
(1) 1  
(2) 3 
(3) 2 
(4) 0 
 
 
Q4 - 2024 (27 Jan Shift 1) 
Let the set of all ?? ? ?? such that the equation c o s ? 2 ?? + ?? sin ? ?? = 2 ?? - 7 has a solution be 
[ ?? , ?? ] and ?? = t a n ? 9
°
- t a n ? 27
°
-
1
c o t ? 63
°
+ t a n ? 81
°
, then pqr is equal to 
Q5 - 2024 (27 Jan Shift 2) 
If 2 t a n
2
? ?? - 5 s e c ? ?? = 1 has exactly 7 solutions in the interval [ 0 ,
????
2
], for the least value of 
?? ? ?? then ?
k = 1
n
?
k
2
k
 is equal to : 
(1) 
1
2
15
( 2
14
- 14 ) 
(2) 
1
2
14
( 2
15
- 15 ) 
(3) 1 -
15
2
13
 
(4) 
1
2
13
( 2
14
- 15 ) 
Q6 - 2024 (29 Jan Shift 1) 
If ?? , -
?? 2
< ?? <
?? 2
 is the solution of 4 c o s ? ?? + 5 s i n ? ?? = 1, then the value of t a n ? ?? is 
(1) 
10 - v 10
6
 
(2) 
10 - v 10
12
 
(3) 
v 10 - 10
12
 
(4) 
v 10 - 10
6
 
Q7- 2024 (29 Jan Shift 2) 
The sum of the solutions ?? ? R of the equation 
3 c o s ? 2 ?? + c o s
3
? 2 ?? c o s
6
? ?? - s i n
6
? ?? = ?? 3
- ?? 2
+ 6 is 
(1) 0 
(2) 1 
(3) -1 
(4) 3 
 
Q8 - 2024 (30 Jan Shift 1) 
If 2 sin
3
? ?? + sin ? 2 ?? c o s ? ?? + 4 s i n ? ?? - 4 = 0 has exactly 3 solutions in the interval [ 0 ,
n ?? 2
] , n ?
N, then the roots of the equation ?? 2
+ ???? + ( ?? - 3 ) = 0 belong to : 
(1) ( 0 , 8 ) 
(2) ( - 8 , 0 ) 
(3) ( -
v 17
2
,
v 17
2
) 
(4) Z 
 
Answer Key 
Q1 (1) 
Q2 (2) 
Q3 (4) 
Q4 (48)  
Q5 (4)  
Q6 (3) 
Q7 (3) 
Q8 (2) 
 
Solutions 
Q1 
Finding t a n ? ( ?? + ?? ) we get 
Page 4


JEE Mains Previous Year Questions 
(2021-2024): Trigonometric Ratios, 
Functions & Equations 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If t a n ? A =
1
v ?? ( ?? 2
+ ?? + 1 )
, t a n ? ?? =
v ?? v ?? 2
+ ?? + 1
 and t a n ? ?? = ( ?? - 3
+ ?? - 2
+ ?? - 1
)
1
2
, 0 < ?? , ?? , ?? <
?? 2
, 
then A + B is equal to : 
(1) C 
(2) ?? - ?? 
(3) 2 ?? - ?? 
(4) 
?? 2
- ?? 
Q2 - 2024 (30 Jan Shift 2) 
For ?? , ?? ? ( 0 ,
?? 2
), let 3 s i n ? ( ?? + ?? ) = 2 s i n ? ( ?? - ?? ) and a real number k be such that 
t a n ? ?? = kt a n ? ?? . Then the value of ?? is equal to : 
(1) -
2
3
 
(2) -5 
(3) 
2
3
 
(4) 5 
Q3 - 2024 (01 Feb Shift 2) 
The number of solutions of the equation 4 sin
2
? ?? - 4 c o s
3
? ?? + 9 - 4 c o s ? ?? = 0 ; ?? ? [ - 2 ?? , 2 ?? ] 
is : 
(1) 1  
(2) 3 
(3) 2 
(4) 0 
 
 
Q4 - 2024 (27 Jan Shift 1) 
Let the set of all ?? ? ?? such that the equation c o s ? 2 ?? + ?? sin ? ?? = 2 ?? - 7 has a solution be 
[ ?? , ?? ] and ?? = t a n ? 9
°
- t a n ? 27
°
-
1
c o t ? 63
°
+ t a n ? 81
°
, then pqr is equal to 
Q5 - 2024 (27 Jan Shift 2) 
If 2 t a n
2
? ?? - 5 s e c ? ?? = 1 has exactly 7 solutions in the interval [ 0 ,
????
2
], for the least value of 
?? ? ?? then ?
k = 1
n
?
k
2
k
 is equal to : 
(1) 
1
2
15
( 2
14
- 14 ) 
(2) 
1
2
14
( 2
15
- 15 ) 
(3) 1 -
15
2
13
 
(4) 
1
2
13
( 2
14
- 15 ) 
Q6 - 2024 (29 Jan Shift 1) 
If ?? , -
?? 2
< ?? <
?? 2
 is the solution of 4 c o s ? ?? + 5 s i n ? ?? = 1, then the value of t a n ? ?? is 
(1) 
10 - v 10
6
 
(2) 
10 - v 10
12
 
(3) 
v 10 - 10
12
 
(4) 
v 10 - 10
6
 
Q7- 2024 (29 Jan Shift 2) 
The sum of the solutions ?? ? R of the equation 
3 c o s ? 2 ?? + c o s
3
? 2 ?? c o s
6
? ?? - s i n
6
? ?? = ?? 3
- ?? 2
+ 6 is 
(1) 0 
(2) 1 
(3) -1 
(4) 3 
 
Q8 - 2024 (30 Jan Shift 1) 
If 2 sin
3
? ?? + sin ? 2 ?? c o s ? ?? + 4 s i n ? ?? - 4 = 0 has exactly 3 solutions in the interval [ 0 ,
n ?? 2
] , n ?
N, then the roots of the equation ?? 2
+ ???? + ( ?? - 3 ) = 0 belong to : 
(1) ( 0 , 8 ) 
(2) ( - 8 , 0 ) 
(3) ( -
v 17
2
,
v 17
2
) 
(4) Z 
 
Answer Key 
Q1 (1) 
Q2 (2) 
Q3 (4) 
Q4 (48)  
Q5 (4)  
Q6 (3) 
Q7 (3) 
Q8 (2) 
 
Solutions 
Q1 
Finding t a n ? ( ?? + ?? ) we get 
? ? t a n ? ( A + B ) =
t a n ? ?? + t a n ? ?? 1 - t a n ? ?? t a n ? ?? =
1
v ?? ( ?? 2
+ ?? + 1 )
+
v ?? v ?? 2
+ ?? + 1
1 -
1
?? 2
+ ?? + 1
? ? t a n ? ( A + B ) =
( 1 + ?? ) ( v ?? 2
+ ?? + 1 )
( ?? 2
+ ?? ) ( v ?? )
( 1 + ?? ) ( v ?? 2
+ ?? + 1 )
( ?? 2
+ ?? ) ( v ?? )
t a n ? ( ?? + ?? ) =
v ?? 2
+ ?? + 1
?? v ?? = t a n ? ?? ?? + ?? = ?? 
Q2 
3 s i n ? ?? c o s ? ?? + 3 s i n ? ?? c o s ? ?? = 2 s i n ? ?? c o s ? ?? - 2 s i n ? ?? c o s ? ?? 
5 s i n ? ?? c o s ? ?? = - sin ? ?? c o s ? ?? 
t a n ? ?? = -
1
5
t a n ? ?? 
t a n ? ?? = - 5 t a n ? ?? 
Q3 
4 sin
2
? ?? - 4 c o s
3
? ?? + 9 - 4 c o s ? ?? = 0 ; ?? ? [ - 2 ?? , 2 ?? ] 
4 - 4 c o s
2
? ?? - 4 c o s
3
? ?? + 9 - 4 c o s ? ?? = 0 
4 c o s
3
? ?? + 4 c o s
2
? ?? + 4 c o s ? ?? - 13 = 0 
4 c o s
3
? ?? + 4 c o s
2
? ?? + 4 c o s ? ?? = 13 
L.H.S. = 12 c a n
'
t be equal to 13 . 
Q4 
c o s ? 2 ?? + ?? · sin ? ?? = 2 ?? - 7 
?? ( sin ? ?? - 2 ) = 2 ( sin ? ?? - 2 ) ( sin ? ?? + 2 ) 
sin ? ?? = 2 , ? ?? = 2 ( sin ? ?? + 2 ) 
? ?? ? [ 2 , 6 ] 
?? = 2 ? ?? = 6 
Page 5


JEE Mains Previous Year Questions 
(2021-2024): Trigonometric Ratios, 
Functions & Equations 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If t a n ? A =
1
v ?? ( ?? 2
+ ?? + 1 )
, t a n ? ?? =
v ?? v ?? 2
+ ?? + 1
 and t a n ? ?? = ( ?? - 3
+ ?? - 2
+ ?? - 1
)
1
2
, 0 < ?? , ?? , ?? <
?? 2
, 
then A + B is equal to : 
(1) C 
(2) ?? - ?? 
(3) 2 ?? - ?? 
(4) 
?? 2
- ?? 
Q2 - 2024 (30 Jan Shift 2) 
For ?? , ?? ? ( 0 ,
?? 2
), let 3 s i n ? ( ?? + ?? ) = 2 s i n ? ( ?? - ?? ) and a real number k be such that 
t a n ? ?? = kt a n ? ?? . Then the value of ?? is equal to : 
(1) -
2
3
 
(2) -5 
(3) 
2
3
 
(4) 5 
Q3 - 2024 (01 Feb Shift 2) 
The number of solutions of the equation 4 sin
2
? ?? - 4 c o s
3
? ?? + 9 - 4 c o s ? ?? = 0 ; ?? ? [ - 2 ?? , 2 ?? ] 
is : 
(1) 1  
(2) 3 
(3) 2 
(4) 0 
 
 
Q4 - 2024 (27 Jan Shift 1) 
Let the set of all ?? ? ?? such that the equation c o s ? 2 ?? + ?? sin ? ?? = 2 ?? - 7 has a solution be 
[ ?? , ?? ] and ?? = t a n ? 9
°
- t a n ? 27
°
-
1
c o t ? 63
°
+ t a n ? 81
°
, then pqr is equal to 
Q5 - 2024 (27 Jan Shift 2) 
If 2 t a n
2
? ?? - 5 s e c ? ?? = 1 has exactly 7 solutions in the interval [ 0 ,
????
2
], for the least value of 
?? ? ?? then ?
k = 1
n
?
k
2
k
 is equal to : 
(1) 
1
2
15
( 2
14
- 14 ) 
(2) 
1
2
14
( 2
15
- 15 ) 
(3) 1 -
15
2
13
 
(4) 
1
2
13
( 2
14
- 15 ) 
Q6 - 2024 (29 Jan Shift 1) 
If ?? , -
?? 2
< ?? <
?? 2
 is the solution of 4 c o s ? ?? + 5 s i n ? ?? = 1, then the value of t a n ? ?? is 
(1) 
10 - v 10
6
 
(2) 
10 - v 10
12
 
(3) 
v 10 - 10
12
 
(4) 
v 10 - 10
6
 
Q7- 2024 (29 Jan Shift 2) 
The sum of the solutions ?? ? R of the equation 
3 c o s ? 2 ?? + c o s
3
? 2 ?? c o s
6
? ?? - s i n
6
? ?? = ?? 3
- ?? 2
+ 6 is 
(1) 0 
(2) 1 
(3) -1 
(4) 3 
 
Q8 - 2024 (30 Jan Shift 1) 
If 2 sin
3
? ?? + sin ? 2 ?? c o s ? ?? + 4 s i n ? ?? - 4 = 0 has exactly 3 solutions in the interval [ 0 ,
n ?? 2
] , n ?
N, then the roots of the equation ?? 2
+ ???? + ( ?? - 3 ) = 0 belong to : 
(1) ( 0 , 8 ) 
(2) ( - 8 , 0 ) 
(3) ( -
v 17
2
,
v 17
2
) 
(4) Z 
 
Answer Key 
Q1 (1) 
Q2 (2) 
Q3 (4) 
Q4 (48)  
Q5 (4)  
Q6 (3) 
Q7 (3) 
Q8 (2) 
 
Solutions 
Q1 
Finding t a n ? ( ?? + ?? ) we get 
? ? t a n ? ( A + B ) =
t a n ? ?? + t a n ? ?? 1 - t a n ? ?? t a n ? ?? =
1
v ?? ( ?? 2
+ ?? + 1 )
+
v ?? v ?? 2
+ ?? + 1
1 -
1
?? 2
+ ?? + 1
? ? t a n ? ( A + B ) =
( 1 + ?? ) ( v ?? 2
+ ?? + 1 )
( ?? 2
+ ?? ) ( v ?? )
( 1 + ?? ) ( v ?? 2
+ ?? + 1 )
( ?? 2
+ ?? ) ( v ?? )
t a n ? ( ?? + ?? ) =
v ?? 2
+ ?? + 1
?? v ?? = t a n ? ?? ?? + ?? = ?? 
Q2 
3 s i n ? ?? c o s ? ?? + 3 s i n ? ?? c o s ? ?? = 2 s i n ? ?? c o s ? ?? - 2 s i n ? ?? c o s ? ?? 
5 s i n ? ?? c o s ? ?? = - sin ? ?? c o s ? ?? 
t a n ? ?? = -
1
5
t a n ? ?? 
t a n ? ?? = - 5 t a n ? ?? 
Q3 
4 sin
2
? ?? - 4 c o s
3
? ?? + 9 - 4 c o s ? ?? = 0 ; ?? ? [ - 2 ?? , 2 ?? ] 
4 - 4 c o s
2
? ?? - 4 c o s
3
? ?? + 9 - 4 c o s ? ?? = 0 
4 c o s
3
? ?? + 4 c o s
2
? ?? + 4 c o s ? ?? - 13 = 0 
4 c o s
3
? ?? + 4 c o s
2
? ?? + 4 c o s ? ?? = 13 
L.H.S. = 12 c a n
'
t be equal to 13 . 
Q4 
c o s ? 2 ?? + ?? · sin ? ?? = 2 ?? - 7 
?? ( sin ? ?? - 2 ) = 2 ( sin ? ?? - 2 ) ( sin ? ?? + 2 ) 
sin ? ?? = 2 , ? ?? = 2 ( sin ? ?? + 2 ) 
? ?? ? [ 2 , 6 ] 
?? = 2 ? ?? = 6 
?? = t a n ? 9
°
+ c o t ? 9
°
- t a n ? 27 - c o t ? 27 
?? =
 1 
sin ? 9 · c o s ? 9
-
1
sin ? 27 · c o s ? 27
 
= 2 [
4
v 5 - 1
-
4
v 5 + 1
] 
?? = 4 
p.q. . ?? = 2 × 6 × 4 = 48 
Q5 
2 t a n
2
? ?? - 5 s e c ? ?? - 1 = 0
? ? 2 s e c
2
? ?? - 5 s e c ? ?? - 3 = 0
? ? ( 2 s e c ? ?? + 1 ) ( s e c ? ?? - 3 ) = 0
? ? s e c ? ?? = -
1
2
, 3
? ? c o s ? ?? = - 2 ,
1
3
? ? c o s ? ?? =
1
3
 
For 7 solutions n = 13 
So, ?
k = 1
13
?
k
2
k
= S (say) 
S =
1
2
+
2
2
2
+
3
2
3
+ ? +
13
2
13
 
1
2
?? =
1
2
2
+
1
2
3
+ ? . +
12
2
13
+
13
2
14
 
?
?? 2
=
1
2
·
1 -
1
2
13
1 -
1
2
-
13
2
14
? ?? = 2 · (
2
13
- 1
2
13
) -
13
2
13
 
Q6 
4 + 5 t a n ? ?? = s e c ? ?? 
Squaring : 24 t a n
2
? ?? + 4 0 t a n ? ?? + 15 = 0 
t a n ? ?? =
- 10 ± v 10
12
 
and t a n ? ?? = - (
10 + v 10
12
) is Rejected. 
Read More
209 videos|443 docs|143 tests

Top Courses for JEE

FAQs on Trigonometric Ratios, Functions & Equations: JEE Mains Previous Year Questions (2021-2024) - Mathematics (Maths) for JEE Main & Advanced

1. How do you find the trigonometric ratios of an angle in a right triangle?
Ans. To find the trigonometric ratios of an angle in a right triangle, you can use the ratios of the sides of the triangle. The sine ratio is the ratio of the length of the side opposite the angle to the hypotenuse, the cosine ratio is the ratio of the length of the side adjacent to the angle to the hypotenuse, and the tangent ratio is the ratio of the length of the side opposite the angle to the side adjacent to the angle.
2. What are the properties of trigonometric functions?
Ans. Trigonometric functions have various properties, including periodicity, symmetry, and the relationships between different functions like sine, cosine, and tangent. They also have specific ranges and domains, such as sine and cosine functions having a range of [-1,1] and tangent having a domain excluding odd multiples of pi/2.
3. How do you solve trigonometric equations?
Ans. To solve trigonometric equations, you can use algebraic techniques along with trigonometric identities and properties. You may need to simplify the equation, use trigonometric identities to rewrite it in a more manageable form, and then solve for the variable by isolating it on one side of the equation.
4. What are the common trigonometric identities used in trigonometry?
Ans. Some common trigonometric identities used in trigonometry include Pythagorean identities (sin^2θ + cos^2θ = 1), reciprocal identities (cscθ = 1/sinθ, secθ = 1/cosθ, cotθ = 1/tanθ), and double angle identities (sin2θ = 2sinθcosθ).
5. How are trigonometric functions used in real-life applications?
Ans. Trigonometric functions are used in various real-life applications such as engineering, physics, and astronomy. They help in calculating distances, angles, and heights in structures, analyzing wave patterns, and predicting celestial events.
209 videos|443 docs|143 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Functions & Equations: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

Trigonometric Ratios

,

practice quizzes

,

Functions & Equations: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

shortcuts and tricks

,

mock tests for examination

,

study material

,

Extra Questions

,

Objective type Questions

,

MCQs

,

ppt

,

Exam

,

Free

,

Trigonometric Ratios

,

Previous Year Questions with Solutions

,

video lectures

,

Trigonometric Ratios

,

Functions & Equations: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

Semester Notes

,

past year papers

,

pdf

,

Important questions

,

Viva Questions

,

Sample Paper

,

Summary

;