Page 1
L o g i c a l R e a s o n i n g
S e t 2
1 . 3 , 9 , 2 7 , 8 1 , _ _ ?
A . 1 6 2
B . 2 4 3
C . 3 2 4
D . 4 0 5
A n s : B . 2 4 3
S o l : E a c h n u m b e r i s m u l t i p l i e d b y 3 .
2 . D o c t o r : H o s p i t a l : : T e a c h e r : _ _ ?
A . C l a s s r o o m
B . S c h o o l
C . O f ? c e
D . L i b r a r y
A n s : B . S c h o o l
S o l : A d o c t o r w o r k s i n a h o s p i t a l ; a t e a c h e r w o r k s i n a s c h o o l .
3 . I f H E R O i s c o d e d a s J G T Q , h o w i s V I L L A c o d e d ?
A . W J M M B
B . X K N N C
C . Y L O O D
D . Z M P P E
A n s : B . X K N N C
S o l : E a c h l e t t e r i s r e p l a c e d b y t h e l e t t e r t w o p o s i t i o n s a h e a d i n t h e a l p h a b e t .
4 . P o i n t i n g t o a p h o t o g r a p h , a w o m a n s a y s , " T h i s m a n ' s s o n ' s s i s t e r i s m y m o t h e r - i n - l a w . " H o w
i s t h e w o m a n r e l a t e d t o t h e m a n i n t h e p h o t o g r a p h ?
A . D a u g h t e r
B . S i s t e r
C . D a u g h t e r - i n - l a w
D . N i e c e
A n s : C . D a u g h t e r - i n - l a w
S o l : T h e w o m a n ' s h u s b a n d ' s s i s t e r i s h e r m o t h e r - i n - l a w .
5 . W h i c h o f t h e f o l l o w i n g r e p r e s e n t s t h e r e l a t i o n s h i p a m o n g M a n , D o c t o r , a n d W o m a n ?
A . D i a g r a m s h o w i n g D o c t o r a s a s u b s e t o f b o t h M a n a n d W o m a n .
B . D i a g r a m s h o w i n g M a n a s a s u b s e t o f D o c t o r .
C . D i a g r a m s h o w i n g W o m a n a s a s u b s e t o f D o c t o r .
D . D i a g r a m s h o w i n g M a n , D o c t o r , a n d W o m a n a s s e p a r a t e e n t i t i e s .
A n s : A . D i a g r a m s h o w i n g D o c t o r a s a s u b s e t o f b o t h M a n a n d W o m a n .
6 . 2 B , 4 D , 6 F , _ _ ?
A . 8 H
B . 1 0 J
Page 2
L o g i c a l R e a s o n i n g
S e t 2
1 . 3 , 9 , 2 7 , 8 1 , _ _ ?
A . 1 6 2
B . 2 4 3
C . 3 2 4
D . 4 0 5
A n s : B . 2 4 3
S o l : E a c h n u m b e r i s m u l t i p l i e d b y 3 .
2 . D o c t o r : H o s p i t a l : : T e a c h e r : _ _ ?
A . C l a s s r o o m
B . S c h o o l
C . O f ? c e
D . L i b r a r y
A n s : B . S c h o o l
S o l : A d o c t o r w o r k s i n a h o s p i t a l ; a t e a c h e r w o r k s i n a s c h o o l .
3 . I f H E R O i s c o d e d a s J G T Q , h o w i s V I L L A c o d e d ?
A . W J M M B
B . X K N N C
C . Y L O O D
D . Z M P P E
A n s : B . X K N N C
S o l : E a c h l e t t e r i s r e p l a c e d b y t h e l e t t e r t w o p o s i t i o n s a h e a d i n t h e a l p h a b e t .
4 . P o i n t i n g t o a p h o t o g r a p h , a w o m a n s a y s , " T h i s m a n ' s s o n ' s s i s t e r i s m y m o t h e r - i n - l a w . " H o w
i s t h e w o m a n r e l a t e d t o t h e m a n i n t h e p h o t o g r a p h ?
A . D a u g h t e r
B . S i s t e r
C . D a u g h t e r - i n - l a w
D . N i e c e
A n s : C . D a u g h t e r - i n - l a w
S o l : T h e w o m a n ' s h u s b a n d ' s s i s t e r i s h e r m o t h e r - i n - l a w .
5 . W h i c h o f t h e f o l l o w i n g r e p r e s e n t s t h e r e l a t i o n s h i p a m o n g M a n , D o c t o r , a n d W o m a n ?
A . D i a g r a m s h o w i n g D o c t o r a s a s u b s e t o f b o t h M a n a n d W o m a n .
B . D i a g r a m s h o w i n g M a n a s a s u b s e t o f D o c t o r .
C . D i a g r a m s h o w i n g W o m a n a s a s u b s e t o f D o c t o r .
D . D i a g r a m s h o w i n g M a n , D o c t o r , a n d W o m a n a s s e p a r a t e e n t i t i e s .
A n s : A . D i a g r a m s h o w i n g D o c t o r a s a s u b s e t o f b o t h M a n a n d W o m a n .
6 . 2 B , 4 D , 6 F , _ _ ?
A . 8 H
B . 1 0 J
C . 1 2 L
D . 1 4 N
A n s : A . 8 H
S o l : E v e n n u m b e r s i n c r e a s e b y 2 a n d l e t t e r s m o v e f o r w a r d b y 2 .
7 . I f ? ( D e l t a ) m e a n s + + + , S ( S i g m a ) m e a n s × , ? ( P i ) m e a n s - , a n d T ( T h e t a ) m e a n s ÷ , t h e n
w h a t i s t h e v a l u e o f 1 2 ? 3 S 2 ? 4 T 2 ?
A . 1 6
B . 1 7
C . 1 8
D . 1 9
A n s : A . 1 6
S o l : R e p l a c e s y m b o l s a n d s o l v e : 1 2 + 3 × 2 - 4 ÷ 2 = 1 6 .
8 . A l l p e n s a r e b l u e . S o m e b l u e t h i n g s a r e p e n c i l s . W h i c h o f t h e f o l l o w i n g i s c o r r e c t ?
A . A l l p e n s a r e p e n c i l s .
B . S o m e p e n s a r e p e n c i l s .
C . S o m e p e n c i l s a r e b l u e .
D . A l l p e n c i l s a r e b l u e .
A n s : C . S o m e p e n c i l s a r e b l u e .
S o l : D e r i v e d f r o m t h e g i v e n s t a t e m e n t s .
9 . F i n d t h e m i r r o r i m a g e o f t h e w o r d " L E V E L . "
A . L E V E L
B . L E V L E
C . L V E E L
D . L E V E E
A n s : A . L E V E L
S o l : T h e w o r d " L E V E L " r e m a i n s t h e s a m e i n t h e m i r r o r i m a g e .
1 0 . I f D O G i s c o d e d a s 4 1 5 7 , t h e n C A T = _ _ ?
A . 3 1 2 0
B . 3 1 2 1
C . 3 1 2 2
D . 3 1 2 3
A n s : A . 3 1 2 0
S o l : A s s i g n e a c h l e t t e r a c o r r e s p o n d i n g n u m b e r ( A = 1 , B = 2 , . . . , Z = 2 6 ) .
1 1 . P o i n t i n g t o a m a n , a w o m a n s a i d , " H e i s t h e o n l y s o n o f m y m o t h e r ' s m o t h e r . " H o w i s t h e
w o m a n r e l a t e d t o t h e m a n ?
A . M o t h e r
B . A u n t
C . S i s t e r
D . C o u s i n
A n s : C . S i s t e r
S o l : T h e m a n i s t h e w o m a n ' s b r o t h e r .
Page 3
L o g i c a l R e a s o n i n g
S e t 2
1 . 3 , 9 , 2 7 , 8 1 , _ _ ?
A . 1 6 2
B . 2 4 3
C . 3 2 4
D . 4 0 5
A n s : B . 2 4 3
S o l : E a c h n u m b e r i s m u l t i p l i e d b y 3 .
2 . D o c t o r : H o s p i t a l : : T e a c h e r : _ _ ?
A . C l a s s r o o m
B . S c h o o l
C . O f ? c e
D . L i b r a r y
A n s : B . S c h o o l
S o l : A d o c t o r w o r k s i n a h o s p i t a l ; a t e a c h e r w o r k s i n a s c h o o l .
3 . I f H E R O i s c o d e d a s J G T Q , h o w i s V I L L A c o d e d ?
A . W J M M B
B . X K N N C
C . Y L O O D
D . Z M P P E
A n s : B . X K N N C
S o l : E a c h l e t t e r i s r e p l a c e d b y t h e l e t t e r t w o p o s i t i o n s a h e a d i n t h e a l p h a b e t .
4 . P o i n t i n g t o a p h o t o g r a p h , a w o m a n s a y s , " T h i s m a n ' s s o n ' s s i s t e r i s m y m o t h e r - i n - l a w . " H o w
i s t h e w o m a n r e l a t e d t o t h e m a n i n t h e p h o t o g r a p h ?
A . D a u g h t e r
B . S i s t e r
C . D a u g h t e r - i n - l a w
D . N i e c e
A n s : C . D a u g h t e r - i n - l a w
S o l : T h e w o m a n ' s h u s b a n d ' s s i s t e r i s h e r m o t h e r - i n - l a w .
5 . W h i c h o f t h e f o l l o w i n g r e p r e s e n t s t h e r e l a t i o n s h i p a m o n g M a n , D o c t o r , a n d W o m a n ?
A . D i a g r a m s h o w i n g D o c t o r a s a s u b s e t o f b o t h M a n a n d W o m a n .
B . D i a g r a m s h o w i n g M a n a s a s u b s e t o f D o c t o r .
C . D i a g r a m s h o w i n g W o m a n a s a s u b s e t o f D o c t o r .
D . D i a g r a m s h o w i n g M a n , D o c t o r , a n d W o m a n a s s e p a r a t e e n t i t i e s .
A n s : A . D i a g r a m s h o w i n g D o c t o r a s a s u b s e t o f b o t h M a n a n d W o m a n .
6 . 2 B , 4 D , 6 F , _ _ ?
A . 8 H
B . 1 0 J
C . 1 2 L
D . 1 4 N
A n s : A . 8 H
S o l : E v e n n u m b e r s i n c r e a s e b y 2 a n d l e t t e r s m o v e f o r w a r d b y 2 .
7 . I f ? ( D e l t a ) m e a n s + + + , S ( S i g m a ) m e a n s × , ? ( P i ) m e a n s - , a n d T ( T h e t a ) m e a n s ÷ , t h e n
w h a t i s t h e v a l u e o f 1 2 ? 3 S 2 ? 4 T 2 ?
A . 1 6
B . 1 7
C . 1 8
D . 1 9
A n s : A . 1 6
S o l : R e p l a c e s y m b o l s a n d s o l v e : 1 2 + 3 × 2 - 4 ÷ 2 = 1 6 .
8 . A l l p e n s a r e b l u e . S o m e b l u e t h i n g s a r e p e n c i l s . W h i c h o f t h e f o l l o w i n g i s c o r r e c t ?
A . A l l p e n s a r e p e n c i l s .
B . S o m e p e n s a r e p e n c i l s .
C . S o m e p e n c i l s a r e b l u e .
D . A l l p e n c i l s a r e b l u e .
A n s : C . S o m e p e n c i l s a r e b l u e .
S o l : D e r i v e d f r o m t h e g i v e n s t a t e m e n t s .
9 . F i n d t h e m i r r o r i m a g e o f t h e w o r d " L E V E L . "
A . L E V E L
B . L E V L E
C . L V E E L
D . L E V E E
A n s : A . L E V E L
S o l : T h e w o r d " L E V E L " r e m a i n s t h e s a m e i n t h e m i r r o r i m a g e .
1 0 . I f D O G i s c o d e d a s 4 1 5 7 , t h e n C A T = _ _ ?
A . 3 1 2 0
B . 3 1 2 1
C . 3 1 2 2
D . 3 1 2 3
A n s : A . 3 1 2 0
S o l : A s s i g n e a c h l e t t e r a c o r r e s p o n d i n g n u m b e r ( A = 1 , B = 2 , . . . , Z = 2 6 ) .
1 1 . P o i n t i n g t o a m a n , a w o m a n s a i d , " H e i s t h e o n l y s o n o f m y m o t h e r ' s m o t h e r . " H o w i s t h e
w o m a n r e l a t e d t o t h e m a n ?
A . M o t h e r
B . A u n t
C . S i s t e r
D . C o u s i n
A n s : C . S i s t e r
S o l : T h e m a n i s t h e w o m a n ' s b r o t h e r .
1 2 . W h i c h o f t h e f o l l o w i n g r e p r e s e n t s t h e r e l a t i o n s h i p a m o n g P e n , P e n c i l , a n d S t a t i o n e r y ?
A . D i a g r a m s h o w i n g P e n a n d P e n c i l a s s u b s e t s o f S t a t i o n e r y .
B . D i a g r a m s h o w i n g P e n a n d S t a t i o n e r y a s s u b s e t s o f P e n c i l .
C . D i a g r a m s h o w i n g P e n c i l a n d S t a t i o n e r y a s s u b s e t s o f P e n .
D . D i a g r a m s h o w i n g P e n , P e n c i l , a n d S t a t i o n e r y a s s e p a r a t e e n t i t i e s .
A n s : A . D i a g r a m s h o w i n g P e n a n d P e n c i l a s s u b s e t s o f S t a t i o n e r y .
1 3 . A Z , B Y , C X , _ _ ?
A . D U
B . D W
C . E V
D . F X
A n s : B . D W
S o l : T h e ? r s t l e t t e r m o v e s f o r w a r d a n d t h e s e c o n d l e t t e r m o v e s b a c k w a r d .
1 4 . I f # m e a n s + + + , @ m e a n s - , * m e a n s × , a n d % m e a n s ÷ , t h e n w h a t i s t h e v a l u e o f
8 # 4 @ 2 * 3 % 6 ?
A . 1 8
B . 1 9
C . 2 0
D . 2 1
A n s : A . 1 8
S o l : R e p l a c e s y m b o l s a n d s o l v e : 8 + 4 - 2 × 3 ÷ 6 = 1 8 .
1 5 . A l l r o s e s a r e ? o w e r s . S o m e ? o w e r s f a d e q u i c k l y . W h i c h o f t h e f o l l o w i n g i s c o r r e c t ?
A . A l l r o s e s f a d e q u i c k l y .
B . S o m e r o s e s m a y f a d e q u i c k l y .
C . N o r o s e s f a d e q u i c k l y .
D . S o m e ? o w e r s a r e r o s e s .
A n s : B . S o m e r o s e s m a y f a d e q u i c k l y .
S o l : D e r i v e d f r o m t h e g i v e n s t a t e m e n t s .
M a t h e m a t i c a l R e a s o n i n g
1 6 . T h e n u m b e r 5 6 4 7 3 8 i s d i v i s i b l e b y _ _ _ _ _ _ .
A . 2
B . 3
C . 5
D . 1 1
A n s : A . 2
S o l : A n u m b e r i s d i v i s i b l e b y 2 i f i t e n d s i n a n e v e n d i g i t . 5 6 4 7 3 8 e n d s i n 8 , w h i c h i s e v e n .
1 7 . _ _ _ _ _ _ i s t h e l a r g e s t p r i m e n u m b e r l e s s t h a n 1 0 0 .
A . 9 1
B . 9 7
C . 8 9
D . 8 3
Page 4
L o g i c a l R e a s o n i n g
S e t 2
1 . 3 , 9 , 2 7 , 8 1 , _ _ ?
A . 1 6 2
B . 2 4 3
C . 3 2 4
D . 4 0 5
A n s : B . 2 4 3
S o l : E a c h n u m b e r i s m u l t i p l i e d b y 3 .
2 . D o c t o r : H o s p i t a l : : T e a c h e r : _ _ ?
A . C l a s s r o o m
B . S c h o o l
C . O f ? c e
D . L i b r a r y
A n s : B . S c h o o l
S o l : A d o c t o r w o r k s i n a h o s p i t a l ; a t e a c h e r w o r k s i n a s c h o o l .
3 . I f H E R O i s c o d e d a s J G T Q , h o w i s V I L L A c o d e d ?
A . W J M M B
B . X K N N C
C . Y L O O D
D . Z M P P E
A n s : B . X K N N C
S o l : E a c h l e t t e r i s r e p l a c e d b y t h e l e t t e r t w o p o s i t i o n s a h e a d i n t h e a l p h a b e t .
4 . P o i n t i n g t o a p h o t o g r a p h , a w o m a n s a y s , " T h i s m a n ' s s o n ' s s i s t e r i s m y m o t h e r - i n - l a w . " H o w
i s t h e w o m a n r e l a t e d t o t h e m a n i n t h e p h o t o g r a p h ?
A . D a u g h t e r
B . S i s t e r
C . D a u g h t e r - i n - l a w
D . N i e c e
A n s : C . D a u g h t e r - i n - l a w
S o l : T h e w o m a n ' s h u s b a n d ' s s i s t e r i s h e r m o t h e r - i n - l a w .
5 . W h i c h o f t h e f o l l o w i n g r e p r e s e n t s t h e r e l a t i o n s h i p a m o n g M a n , D o c t o r , a n d W o m a n ?
A . D i a g r a m s h o w i n g D o c t o r a s a s u b s e t o f b o t h M a n a n d W o m a n .
B . D i a g r a m s h o w i n g M a n a s a s u b s e t o f D o c t o r .
C . D i a g r a m s h o w i n g W o m a n a s a s u b s e t o f D o c t o r .
D . D i a g r a m s h o w i n g M a n , D o c t o r , a n d W o m a n a s s e p a r a t e e n t i t i e s .
A n s : A . D i a g r a m s h o w i n g D o c t o r a s a s u b s e t o f b o t h M a n a n d W o m a n .
6 . 2 B , 4 D , 6 F , _ _ ?
A . 8 H
B . 1 0 J
C . 1 2 L
D . 1 4 N
A n s : A . 8 H
S o l : E v e n n u m b e r s i n c r e a s e b y 2 a n d l e t t e r s m o v e f o r w a r d b y 2 .
7 . I f ? ( D e l t a ) m e a n s + + + , S ( S i g m a ) m e a n s × , ? ( P i ) m e a n s - , a n d T ( T h e t a ) m e a n s ÷ , t h e n
w h a t i s t h e v a l u e o f 1 2 ? 3 S 2 ? 4 T 2 ?
A . 1 6
B . 1 7
C . 1 8
D . 1 9
A n s : A . 1 6
S o l : R e p l a c e s y m b o l s a n d s o l v e : 1 2 + 3 × 2 - 4 ÷ 2 = 1 6 .
8 . A l l p e n s a r e b l u e . S o m e b l u e t h i n g s a r e p e n c i l s . W h i c h o f t h e f o l l o w i n g i s c o r r e c t ?
A . A l l p e n s a r e p e n c i l s .
B . S o m e p e n s a r e p e n c i l s .
C . S o m e p e n c i l s a r e b l u e .
D . A l l p e n c i l s a r e b l u e .
A n s : C . S o m e p e n c i l s a r e b l u e .
S o l : D e r i v e d f r o m t h e g i v e n s t a t e m e n t s .
9 . F i n d t h e m i r r o r i m a g e o f t h e w o r d " L E V E L . "
A . L E V E L
B . L E V L E
C . L V E E L
D . L E V E E
A n s : A . L E V E L
S o l : T h e w o r d " L E V E L " r e m a i n s t h e s a m e i n t h e m i r r o r i m a g e .
1 0 . I f D O G i s c o d e d a s 4 1 5 7 , t h e n C A T = _ _ ?
A . 3 1 2 0
B . 3 1 2 1
C . 3 1 2 2
D . 3 1 2 3
A n s : A . 3 1 2 0
S o l : A s s i g n e a c h l e t t e r a c o r r e s p o n d i n g n u m b e r ( A = 1 , B = 2 , . . . , Z = 2 6 ) .
1 1 . P o i n t i n g t o a m a n , a w o m a n s a i d , " H e i s t h e o n l y s o n o f m y m o t h e r ' s m o t h e r . " H o w i s t h e
w o m a n r e l a t e d t o t h e m a n ?
A . M o t h e r
B . A u n t
C . S i s t e r
D . C o u s i n
A n s : C . S i s t e r
S o l : T h e m a n i s t h e w o m a n ' s b r o t h e r .
1 2 . W h i c h o f t h e f o l l o w i n g r e p r e s e n t s t h e r e l a t i o n s h i p a m o n g P e n , P e n c i l , a n d S t a t i o n e r y ?
A . D i a g r a m s h o w i n g P e n a n d P e n c i l a s s u b s e t s o f S t a t i o n e r y .
B . D i a g r a m s h o w i n g P e n a n d S t a t i o n e r y a s s u b s e t s o f P e n c i l .
C . D i a g r a m s h o w i n g P e n c i l a n d S t a t i o n e r y a s s u b s e t s o f P e n .
D . D i a g r a m s h o w i n g P e n , P e n c i l , a n d S t a t i o n e r y a s s e p a r a t e e n t i t i e s .
A n s : A . D i a g r a m s h o w i n g P e n a n d P e n c i l a s s u b s e t s o f S t a t i o n e r y .
1 3 . A Z , B Y , C X , _ _ ?
A . D U
B . D W
C . E V
D . F X
A n s : B . D W
S o l : T h e ? r s t l e t t e r m o v e s f o r w a r d a n d t h e s e c o n d l e t t e r m o v e s b a c k w a r d .
1 4 . I f # m e a n s + + + , @ m e a n s - , * m e a n s × , a n d % m e a n s ÷ , t h e n w h a t i s t h e v a l u e o f
8 # 4 @ 2 * 3 % 6 ?
A . 1 8
B . 1 9
C . 2 0
D . 2 1
A n s : A . 1 8
S o l : R e p l a c e s y m b o l s a n d s o l v e : 8 + 4 - 2 × 3 ÷ 6 = 1 8 .
1 5 . A l l r o s e s a r e ? o w e r s . S o m e ? o w e r s f a d e q u i c k l y . W h i c h o f t h e f o l l o w i n g i s c o r r e c t ?
A . A l l r o s e s f a d e q u i c k l y .
B . S o m e r o s e s m a y f a d e q u i c k l y .
C . N o r o s e s f a d e q u i c k l y .
D . S o m e ? o w e r s a r e r o s e s .
A n s : B . S o m e r o s e s m a y f a d e q u i c k l y .
S o l : D e r i v e d f r o m t h e g i v e n s t a t e m e n t s .
M a t h e m a t i c a l R e a s o n i n g
1 6 . T h e n u m b e r 5 6 4 7 3 8 i s d i v i s i b l e b y _ _ _ _ _ _ .
A . 2
B . 3
C . 5
D . 1 1
A n s : A . 2
S o l : A n u m b e r i s d i v i s i b l e b y 2 i f i t e n d s i n a n e v e n d i g i t . 5 6 4 7 3 8 e n d s i n 8 , w h i c h i s e v e n .
1 7 . _ _ _ _ _ _ i s t h e l a r g e s t p r i m e n u m b e r l e s s t h a n 1 0 0 .
A . 9 1
B . 9 7
C . 8 9
D . 8 3
A n s : B . 9 7
S o l : 9 7 i s t h e l a r g e s t p r i m e n u m b e r l e s s t h a n 1 0 0 .
1 8 . T h e _ _ _ _ _ _ o f a g i v e n w h o l e n u m b e r i s 2 l e s s t h a n t h e g i v e n n u m b e r .
A . P r e d e c e s s o r
B . S u c c e s s o r
C . I n v e r s e
D . N o n e o f t h e s e
A n s : D . N o n e o f t h e s e
S o l : N o n e o f t h e g i v e n o p t i o n s d e s c r i b e 2 l e s s t h a n t h e g i v e n n u m b e r , w h i c h i s n - 2 .
1 9 . S e l e c t t h e c o r r e c t o p t i o n t o m a k e t h e g i v e n e x p r e s s i o n t r u e . 4 0 - ( 1 3 ) + ( 1 0 ) _ _ _ _ _ _ ( 2 0 ) +
( 7 ) - ( 5 ) + ( 1 )
A . >
B . <
C . =
D . C a n ’ t b e d e t e r m i n e d
A n s : A . >
S o l : 4 0 - 1 3 + 1 0 = 3 7 , a n d 2 0 + 7 - 5 + 1 = 2 3 . T h e r e f o r e , 3 7 > 2 3 .
2 0 . T h e R o m a n n u m e r a l f o r 8 5 4 i s _ _ _ _ _ _ .
A . D C C C L I V
B . D C C L I V
C . D C C C L V I
D . D C C L V I
A n s : A . D C C C L I V
S o l : 8 5 4 i n R o m a n n u m e r a l s i s D C C C L I V .
2 1 . H o w m a n y d i s t i n c t l i n e s c a n b e d r a w n t o p a s s t h r o u g h ? v e p o i n t s s i m u l t a n e o u s l y ?
A . O n e
B . T w o
C . T e n
D . Z e r o
A n s : C . T e n
S o l : F i v e p o i n t s c a n f o r m t e n d i s t i n c t l i n e s c o n n e c t i n g e a c h p a i r o f p o i n t s .
2 2 . I n a g a r d e n , 2 5 w o r k e r s w i l l d e c o r a t e 5 0 t a b l e s . E a c h t a b l e w i l l b e d e c o r a t e d w i t h 6 s i l v e r
b a l l o o n s a n d 1 4 g o l d e n b a l l o o n s . W h i c h e q u a t i o n c o u l d b e u s e d t o ? n d t h e t o t a l n u m b e r o f
s i l v e r a n d g o l d e n b a l l o o n s n e e d e d t o d e c o r a t e a l l t h e t a b l e s ?
A . t = 5 0 ( 6 + 1 4 )
B . t = 2 5 ( 1 4 + 6 )
C . t = 6 ( 1 4 + 5 0 )
D . t = 2 5 ( 5 0 + 6 )
A n s : A . t = 5 0 ( 6 + 1 4 )
S o l : E a c h t a b l e u s e s 6 s i l v e r a n d 1 4 g o l d e n b a l l o o n s , s o t = 5 0 ( 6 + 1 4 ) .
Page 5
L o g i c a l R e a s o n i n g
S e t 2
1 . 3 , 9 , 2 7 , 8 1 , _ _ ?
A . 1 6 2
B . 2 4 3
C . 3 2 4
D . 4 0 5
A n s : B . 2 4 3
S o l : E a c h n u m b e r i s m u l t i p l i e d b y 3 .
2 . D o c t o r : H o s p i t a l : : T e a c h e r : _ _ ?
A . C l a s s r o o m
B . S c h o o l
C . O f ? c e
D . L i b r a r y
A n s : B . S c h o o l
S o l : A d o c t o r w o r k s i n a h o s p i t a l ; a t e a c h e r w o r k s i n a s c h o o l .
3 . I f H E R O i s c o d e d a s J G T Q , h o w i s V I L L A c o d e d ?
A . W J M M B
B . X K N N C
C . Y L O O D
D . Z M P P E
A n s : B . X K N N C
S o l : E a c h l e t t e r i s r e p l a c e d b y t h e l e t t e r t w o p o s i t i o n s a h e a d i n t h e a l p h a b e t .
4 . P o i n t i n g t o a p h o t o g r a p h , a w o m a n s a y s , " T h i s m a n ' s s o n ' s s i s t e r i s m y m o t h e r - i n - l a w . " H o w
i s t h e w o m a n r e l a t e d t o t h e m a n i n t h e p h o t o g r a p h ?
A . D a u g h t e r
B . S i s t e r
C . D a u g h t e r - i n - l a w
D . N i e c e
A n s : C . D a u g h t e r - i n - l a w
S o l : T h e w o m a n ' s h u s b a n d ' s s i s t e r i s h e r m o t h e r - i n - l a w .
5 . W h i c h o f t h e f o l l o w i n g r e p r e s e n t s t h e r e l a t i o n s h i p a m o n g M a n , D o c t o r , a n d W o m a n ?
A . D i a g r a m s h o w i n g D o c t o r a s a s u b s e t o f b o t h M a n a n d W o m a n .
B . D i a g r a m s h o w i n g M a n a s a s u b s e t o f D o c t o r .
C . D i a g r a m s h o w i n g W o m a n a s a s u b s e t o f D o c t o r .
D . D i a g r a m s h o w i n g M a n , D o c t o r , a n d W o m a n a s s e p a r a t e e n t i t i e s .
A n s : A . D i a g r a m s h o w i n g D o c t o r a s a s u b s e t o f b o t h M a n a n d W o m a n .
6 . 2 B , 4 D , 6 F , _ _ ?
A . 8 H
B . 1 0 J
C . 1 2 L
D . 1 4 N
A n s : A . 8 H
S o l : E v e n n u m b e r s i n c r e a s e b y 2 a n d l e t t e r s m o v e f o r w a r d b y 2 .
7 . I f ? ( D e l t a ) m e a n s + + + , S ( S i g m a ) m e a n s × , ? ( P i ) m e a n s - , a n d T ( T h e t a ) m e a n s ÷ , t h e n
w h a t i s t h e v a l u e o f 1 2 ? 3 S 2 ? 4 T 2 ?
A . 1 6
B . 1 7
C . 1 8
D . 1 9
A n s : A . 1 6
S o l : R e p l a c e s y m b o l s a n d s o l v e : 1 2 + 3 × 2 - 4 ÷ 2 = 1 6 .
8 . A l l p e n s a r e b l u e . S o m e b l u e t h i n g s a r e p e n c i l s . W h i c h o f t h e f o l l o w i n g i s c o r r e c t ?
A . A l l p e n s a r e p e n c i l s .
B . S o m e p e n s a r e p e n c i l s .
C . S o m e p e n c i l s a r e b l u e .
D . A l l p e n c i l s a r e b l u e .
A n s : C . S o m e p e n c i l s a r e b l u e .
S o l : D e r i v e d f r o m t h e g i v e n s t a t e m e n t s .
9 . F i n d t h e m i r r o r i m a g e o f t h e w o r d " L E V E L . "
A . L E V E L
B . L E V L E
C . L V E E L
D . L E V E E
A n s : A . L E V E L
S o l : T h e w o r d " L E V E L " r e m a i n s t h e s a m e i n t h e m i r r o r i m a g e .
1 0 . I f D O G i s c o d e d a s 4 1 5 7 , t h e n C A T = _ _ ?
A . 3 1 2 0
B . 3 1 2 1
C . 3 1 2 2
D . 3 1 2 3
A n s : A . 3 1 2 0
S o l : A s s i g n e a c h l e t t e r a c o r r e s p o n d i n g n u m b e r ( A = 1 , B = 2 , . . . , Z = 2 6 ) .
1 1 . P o i n t i n g t o a m a n , a w o m a n s a i d , " H e i s t h e o n l y s o n o f m y m o t h e r ' s m o t h e r . " H o w i s t h e
w o m a n r e l a t e d t o t h e m a n ?
A . M o t h e r
B . A u n t
C . S i s t e r
D . C o u s i n
A n s : C . S i s t e r
S o l : T h e m a n i s t h e w o m a n ' s b r o t h e r .
1 2 . W h i c h o f t h e f o l l o w i n g r e p r e s e n t s t h e r e l a t i o n s h i p a m o n g P e n , P e n c i l , a n d S t a t i o n e r y ?
A . D i a g r a m s h o w i n g P e n a n d P e n c i l a s s u b s e t s o f S t a t i o n e r y .
B . D i a g r a m s h o w i n g P e n a n d S t a t i o n e r y a s s u b s e t s o f P e n c i l .
C . D i a g r a m s h o w i n g P e n c i l a n d S t a t i o n e r y a s s u b s e t s o f P e n .
D . D i a g r a m s h o w i n g P e n , P e n c i l , a n d S t a t i o n e r y a s s e p a r a t e e n t i t i e s .
A n s : A . D i a g r a m s h o w i n g P e n a n d P e n c i l a s s u b s e t s o f S t a t i o n e r y .
1 3 . A Z , B Y , C X , _ _ ?
A . D U
B . D W
C . E V
D . F X
A n s : B . D W
S o l : T h e ? r s t l e t t e r m o v e s f o r w a r d a n d t h e s e c o n d l e t t e r m o v e s b a c k w a r d .
1 4 . I f # m e a n s + + + , @ m e a n s - , * m e a n s × , a n d % m e a n s ÷ , t h e n w h a t i s t h e v a l u e o f
8 # 4 @ 2 * 3 % 6 ?
A . 1 8
B . 1 9
C . 2 0
D . 2 1
A n s : A . 1 8
S o l : R e p l a c e s y m b o l s a n d s o l v e : 8 + 4 - 2 × 3 ÷ 6 = 1 8 .
1 5 . A l l r o s e s a r e ? o w e r s . S o m e ? o w e r s f a d e q u i c k l y . W h i c h o f t h e f o l l o w i n g i s c o r r e c t ?
A . A l l r o s e s f a d e q u i c k l y .
B . S o m e r o s e s m a y f a d e q u i c k l y .
C . N o r o s e s f a d e q u i c k l y .
D . S o m e ? o w e r s a r e r o s e s .
A n s : B . S o m e r o s e s m a y f a d e q u i c k l y .
S o l : D e r i v e d f r o m t h e g i v e n s t a t e m e n t s .
M a t h e m a t i c a l R e a s o n i n g
1 6 . T h e n u m b e r 5 6 4 7 3 8 i s d i v i s i b l e b y _ _ _ _ _ _ .
A . 2
B . 3
C . 5
D . 1 1
A n s : A . 2
S o l : A n u m b e r i s d i v i s i b l e b y 2 i f i t e n d s i n a n e v e n d i g i t . 5 6 4 7 3 8 e n d s i n 8 , w h i c h i s e v e n .
1 7 . _ _ _ _ _ _ i s t h e l a r g e s t p r i m e n u m b e r l e s s t h a n 1 0 0 .
A . 9 1
B . 9 7
C . 8 9
D . 8 3
A n s : B . 9 7
S o l : 9 7 i s t h e l a r g e s t p r i m e n u m b e r l e s s t h a n 1 0 0 .
1 8 . T h e _ _ _ _ _ _ o f a g i v e n w h o l e n u m b e r i s 2 l e s s t h a n t h e g i v e n n u m b e r .
A . P r e d e c e s s o r
B . S u c c e s s o r
C . I n v e r s e
D . N o n e o f t h e s e
A n s : D . N o n e o f t h e s e
S o l : N o n e o f t h e g i v e n o p t i o n s d e s c r i b e 2 l e s s t h a n t h e g i v e n n u m b e r , w h i c h i s n - 2 .
1 9 . S e l e c t t h e c o r r e c t o p t i o n t o m a k e t h e g i v e n e x p r e s s i o n t r u e . 4 0 - ( 1 3 ) + ( 1 0 ) _ _ _ _ _ _ ( 2 0 ) +
( 7 ) - ( 5 ) + ( 1 )
A . >
B . <
C . =
D . C a n ’ t b e d e t e r m i n e d
A n s : A . >
S o l : 4 0 - 1 3 + 1 0 = 3 7 , a n d 2 0 + 7 - 5 + 1 = 2 3 . T h e r e f o r e , 3 7 > 2 3 .
2 0 . T h e R o m a n n u m e r a l f o r 8 5 4 i s _ _ _ _ _ _ .
A . D C C C L I V
B . D C C L I V
C . D C C C L V I
D . D C C L V I
A n s : A . D C C C L I V
S o l : 8 5 4 i n R o m a n n u m e r a l s i s D C C C L I V .
2 1 . H o w m a n y d i s t i n c t l i n e s c a n b e d r a w n t o p a s s t h r o u g h ? v e p o i n t s s i m u l t a n e o u s l y ?
A . O n e
B . T w o
C . T e n
D . Z e r o
A n s : C . T e n
S o l : F i v e p o i n t s c a n f o r m t e n d i s t i n c t l i n e s c o n n e c t i n g e a c h p a i r o f p o i n t s .
2 2 . I n a g a r d e n , 2 5 w o r k e r s w i l l d e c o r a t e 5 0 t a b l e s . E a c h t a b l e w i l l b e d e c o r a t e d w i t h 6 s i l v e r
b a l l o o n s a n d 1 4 g o l d e n b a l l o o n s . W h i c h e q u a t i o n c o u l d b e u s e d t o ? n d t h e t o t a l n u m b e r o f
s i l v e r a n d g o l d e n b a l l o o n s n e e d e d t o d e c o r a t e a l l t h e t a b l e s ?
A . t = 5 0 ( 6 + 1 4 )
B . t = 2 5 ( 1 4 + 6 )
C . t = 6 ( 1 4 + 5 0 )
D . t = 2 5 ( 5 0 + 6 )
A n s : A . t = 5 0 ( 6 + 1 4 )
S o l : E a c h t a b l e u s e s 6 s i l v e r a n d 1 4 g o l d e n b a l l o o n s , s o t = 5 0 ( 6 + 1 4 ) .
2 3 . A p r i m e n u m b e r h a s _ _ _ _ _ _ .
A . 0 , 2 , 4 , 6 , o r 8 a t o n e ' s p l a c e
B . 1 , 3 , 5 , 7 , o r 9 a t o n e ' s p l a c e
C . O n l y 4 f a c t o r s
D . O n l y 4 m u l t i p l e s
A n s : B . 1 , 3 , 5 , 7 , o r 9 a t o n e ' s p l a c e
S o l : A p r i m e n u m b e r h a s 1 , 3 , 5 , o r 7 a t o n e ' s p l a c e .
2 4 . W h i c h o f t h e f o l l o w i n g s t a t e m e n t s i s I N C O R R E C T ?
A . T w o p e r p e n d i c u l a r l i n e s w i l l a l w a y s i n t e r s e c t .
B . A l l e q u i l a t e r a l t r i a n g l e s a r e a l s o i s o s c e l e s .
C . A s q u a r e h a s t w o l i n e s o f s y m m e t r y .
D . T h e s u m o f a n g l e s i n a t r i a n g l e i s 1 8 0 d e g r e e s .
A n s : C . A s q u a r e h a s t w o l i n e s o f s y m m e t r y .
S o l : A s q u a r e h a s f o u r l i n e s o f s y m m e t r y , n o t t w o .
2 5 . W h i c h o f t h e f o l l o w i n g s e t s o f w h o l e n u m b e r s w i l l m a k e t h e g i v e n n u m b e r s e n t e n c e t r u e ?
_ _ _ _ _ _ × _ _ _ _ _ _ + _ _ _ _ _ _ = 3 6
A . 6 , 4 , 1 2
B . 5 , 3 , 2 1
C . 4 , 6 , 1 2
D . 7 , 5 , 1
A n s : C . 4 , 6 , 1 2
S o l : 4 × 6 + 1 2 = 3 6 , w h i c h m a k e s t h e n u m b e r s e n t e n c e t r u e .
2 6 . I f a a n d b a r e e v e n n u m b e r s , t h e n w h i c h o f t h e f o l l o w i n g i s o d d ?
A . a + b
B . a + b + 1
C . a b
D . a b + 2
A n s : B . a + b + 1
S o l : T h e s u m o f t w o e v e n n u m b e r s i s e v e n , s o a d d i n g 1 m a k e s i t o d d .
2 7 . F i n d t h e v a l u e o f 5 x + 2 y , i f x : 5 = 5 0 : 2 0 = 5 : y .
A . 3 0
B . 7 5
C . 1 0 0
D . N o n e o f t h e s e
A n s : D . N o n e o f t h e s e
S o l : F r o m x : 5 = 5 0 : 2 0 , w e g e t x = 1 0 . F r o m 5 : y = 5 0 : 2 0 , w e g e t y = 4 . T h u s , 5 x + 2 y = 5 ( 1 0 ) +
2 ( 4 ) = 5 0 + 8 = 5 8 .
2 8 . W h i c h o f t h e f o l l o w i n g a r e n o t i n p r o p o r t i o n ?
A . 2 4 , 3 6 , 2 8 , 4 2
B . 1 8 , 2 7 , 2 1 , 3 5
C . 1 5 , 2 0 , 2 5 , 3 5
D . 1 4 , 2 1 , 1 6 , 2 8
Read More