Page 1
1
Marking Scheme
Class X Session 2024-25
MATHEMATICS STANDARD (Code No.041)
TIME: 3 hours MAX.MARKS: 80
Q.No. Section A Marks
1. D) -6,6 1
2. B) -5 1
3. D) From a point inside a circle only two tangents can be drawn. 1
4. A) 7 1
5. B) 20 cm 1
6.
A)
11
9
1
7. C) 140
?? 1
8.
B) 8?? 2
- 20
1
9.
C) 30
1
10.
B) isosceles and similar
1
11.
A) Irrational and distinct
1
12.
C)
3
v3
1
13.
B)
594
7
1
14.
B)
3
8
1
15.
B) (-4, 0)
1
16.
A) median
1
17.
C) (3,0)
1
18.
D)
3
26
1
19. B) 1
20. D) 1
Page 2
1
Marking Scheme
Class X Session 2024-25
MATHEMATICS STANDARD (Code No.041)
TIME: 3 hours MAX.MARKS: 80
Q.No. Section A Marks
1. D) -6,6 1
2. B) -5 1
3. D) From a point inside a circle only two tangents can be drawn. 1
4. A) 7 1
5. B) 20 cm 1
6.
A)
11
9
1
7. C) 140
?? 1
8.
B) 8?? 2
- 20
1
9.
C) 30
1
10.
B) isosceles and similar
1
11.
A) Irrational and distinct
1
12.
C)
3
v3
1
13.
B)
594
7
1
14.
B)
3
8
1
15.
B) (-4, 0)
1
16.
A) median
1
17.
C) (3,0)
1
18.
D)
3
26
1
19. B) 1
20. D) 1
2
Section B
21. (A)
(B)
480 = 2
5
x 3 x 5
720 = 2
4
x 3
2
x 5
LCM (480,720) = 2
5
x 3
2
x 5 = 1440
HCF (480, 720) = 2
4
x 3x 5 = 240
OR
85 = 5x17, 238 = 2x7x17
HCF( 85, 238) = 17
17 = 85xm -238
m = 3
½
½
½
½
1
1
22.(A)
(B)
Total number of possible outcomes = 6x6=36
For a product to be odd, both the numbers should be odd.
Favourable outcomes are (7,7) (7,9) (7,11) (9,7) (9,9) (9, 11) (11,7) (11,9)
(11,11)
no. of favourable outcomes = 9
P (product is odd) =
9
36
or
1
4
OR
Total number of three-digit numbers = 900.
Numbers with hundredth digit 8 & and unit’s digit 5 are 805,815,
825,....,895
Number of favourable outcomes = 10
P(selecting one such number) =
10
900
or
1
90
½
1
½
½
1
½
23.
2 (
v3
2
)
2
- (
1
v3
)
2
(v2)
2
=
7
12
1 ½
½
24 Let the required point be (x,0)
v(8 - ?? )
2
+ 25 = v41
=> (8 - ?? )
2
= 16
=> 8 - x =?4
=> x = 4 , 12
Two points on the x-axis are (4,0) & (12,0).
½
½
1
Page 3
1
Marking Scheme
Class X Session 2024-25
MATHEMATICS STANDARD (Code No.041)
TIME: 3 hours MAX.MARKS: 80
Q.No. Section A Marks
1. D) -6,6 1
2. B) -5 1
3. D) From a point inside a circle only two tangents can be drawn. 1
4. A) 7 1
5. B) 20 cm 1
6.
A)
11
9
1
7. C) 140
?? 1
8.
B) 8?? 2
- 20
1
9.
C) 30
1
10.
B) isosceles and similar
1
11.
A) Irrational and distinct
1
12.
C)
3
v3
1
13.
B)
594
7
1
14.
B)
3
8
1
15.
B) (-4, 0)
1
16.
A) median
1
17.
C) (3,0)
1
18.
D)
3
26
1
19. B) 1
20. D) 1
2
Section B
21. (A)
(B)
480 = 2
5
x 3 x 5
720 = 2
4
x 3
2
x 5
LCM (480,720) = 2
5
x 3
2
x 5 = 1440
HCF (480, 720) = 2
4
x 3x 5 = 240
OR
85 = 5x17, 238 = 2x7x17
HCF( 85, 238) = 17
17 = 85xm -238
m = 3
½
½
½
½
1
1
22.(A)
(B)
Total number of possible outcomes = 6x6=36
For a product to be odd, both the numbers should be odd.
Favourable outcomes are (7,7) (7,9) (7,11) (9,7) (9,9) (9, 11) (11,7) (11,9)
(11,11)
no. of favourable outcomes = 9
P (product is odd) =
9
36
or
1
4
OR
Total number of three-digit numbers = 900.
Numbers with hundredth digit 8 & and unit’s digit 5 are 805,815,
825,....,895
Number of favourable outcomes = 10
P(selecting one such number) =
10
900
or
1
90
½
1
½
½
1
½
23.
2 (
v3
2
)
2
- (
1
v3
)
2
(v2)
2
=
7
12
1 ½
½
24 Let the required point be (x,0)
v(8 - ?? )
2
+ 25 = v41
=> (8 - ?? )
2
= 16
=> 8 - x =?4
=> x = 4 , 12
Two points on the x-axis are (4,0) & (12,0).
½
½
1
3
25.
AB = v(3 + 5)
2
+ (0 - 6)
2
= 10
BC = v(9 - 3)
2
+ (8 - 0)
2
= 10
AC = v(9 + 5)
2
+ (8 - 6)
2
= 10v2
Since AB = BC, therefore ?? ABC is isosceles
½
½
½
½
Section C
26.(A)
(B)
Since D, E, F are the mid points of BC, CA, AB respectively
Therefore, EF||BC, DF||AC, DE||AB
BDEF is a parallelogram
? 1= ? 2 & ? 3 = ? 4
?? FBD ~ ?? DEF
Also, DCEF is a parallelogram
? 3= ? 6 & ? 1 = ? 2 ( proved above)
?? DEF ~ ?? ABC
OR
Since PQ//BC therefore ?? APR ~ ?? ABD
=>
????
????
=
????
????
…….. (i)
1
1
1
1
A
P
R
Q
B
D
C
1
2
3
4
5
6
Page 4
1
Marking Scheme
Class X Session 2024-25
MATHEMATICS STANDARD (Code No.041)
TIME: 3 hours MAX.MARKS: 80
Q.No. Section A Marks
1. D) -6,6 1
2. B) -5 1
3. D) From a point inside a circle only two tangents can be drawn. 1
4. A) 7 1
5. B) 20 cm 1
6.
A)
11
9
1
7. C) 140
?? 1
8.
B) 8?? 2
- 20
1
9.
C) 30
1
10.
B) isosceles and similar
1
11.
A) Irrational and distinct
1
12.
C)
3
v3
1
13.
B)
594
7
1
14.
B)
3
8
1
15.
B) (-4, 0)
1
16.
A) median
1
17.
C) (3,0)
1
18.
D)
3
26
1
19. B) 1
20. D) 1
2
Section B
21. (A)
(B)
480 = 2
5
x 3 x 5
720 = 2
4
x 3
2
x 5
LCM (480,720) = 2
5
x 3
2
x 5 = 1440
HCF (480, 720) = 2
4
x 3x 5 = 240
OR
85 = 5x17, 238 = 2x7x17
HCF( 85, 238) = 17
17 = 85xm -238
m = 3
½
½
½
½
1
1
22.(A)
(B)
Total number of possible outcomes = 6x6=36
For a product to be odd, both the numbers should be odd.
Favourable outcomes are (7,7) (7,9) (7,11) (9,7) (9,9) (9, 11) (11,7) (11,9)
(11,11)
no. of favourable outcomes = 9
P (product is odd) =
9
36
or
1
4
OR
Total number of three-digit numbers = 900.
Numbers with hundredth digit 8 & and unit’s digit 5 are 805,815,
825,....,895
Number of favourable outcomes = 10
P(selecting one such number) =
10
900
or
1
90
½
1
½
½
1
½
23.
2 (
v3
2
)
2
- (
1
v3
)
2
(v2)
2
=
7
12
1 ½
½
24 Let the required point be (x,0)
v(8 - ?? )
2
+ 25 = v41
=> (8 - ?? )
2
= 16
=> 8 - x =?4
=> x = 4 , 12
Two points on the x-axis are (4,0) & (12,0).
½
½
1
3
25.
AB = v(3 + 5)
2
+ (0 - 6)
2
= 10
BC = v(9 - 3)
2
+ (8 - 0)
2
= 10
AC = v(9 + 5)
2
+ (8 - 6)
2
= 10v2
Since AB = BC, therefore ?? ABC is isosceles
½
½
½
½
Section C
26.(A)
(B)
Since D, E, F are the mid points of BC, CA, AB respectively
Therefore, EF||BC, DF||AC, DE||AB
BDEF is a parallelogram
? 1= ? 2 & ? 3 = ? 4
?? FBD ~ ?? DEF
Also, DCEF is a parallelogram
? 3= ? 6 & ? 1 = ? 2 ( proved above)
?? DEF ~ ?? ABC
OR
Since PQ//BC therefore ?? APR ~ ?? ABD
=>
????
????
=
????
????
…….. (i)
1
1
1
1
A
P
R
Q
B
D
C
1
2
3
4
5
6
4
?? AQR ~ ?? ACD
=>
????
????
=
????
????
…….. (ii)
Now,
????
????
=
????
????
……….(iii)
Using (i), (ii) & (iii),
????
????
=
????
????
But, BD = DC
=> PR = RQ or AD bisects PQ
1
1
27. Let the numbers be x and 18-x.
1
?? +
1
18-?? =
9
40
=> 18×40 = 9x(18-?? )
=> ?? 2
-18 ?? + 80=0
=> (?? -10)(?? -8)=0
=> ?? =10, 8.
=> 18-?? =8, 10
Hence two numbers are 8 and 10.
½
1
1
½
28.
From given polynomial ?? + ?? =
5
6
, ???? =
1
6
?? 2
+ ?? 2
= (
5
6
)
2
- 2 x
1
6
=
13
36
And ?? 2
?? 2
= (
1
6
)
2
=
1
36
?? 2
-
13
36
?? +
1
36
? Required polynomial is 36?? 2
-13 ?? +1
1
1
½
½
29. (???????? + ?????? ?? )
2
+ (???????? - ?????? ?? )
2
= 2 ( ?????? 2
?? + ?????? 2
?? ) = 2
=> (1)
2
+ (???????? - ?????? ?? )
2
= 2
=> (???????? - ?????? ?? )
2
= 1
=> ???????? - ?????? ?? = ? 1
1 ½
1
½
30.(A)
(B)
Angle described by minute hand in 5 min = 30°.
length of minute hand =18 cm = r.
Area swept by minute hand in 35 minutes
=(
22
7
x18x18×
30
360
) x 7
= 594 ???? 2
.
OR
Area of minor segment = Ar. Sector OAB- Ar. ?? OAB
=
90
360
x
22
7
× 14x14 -
v3
4
x 14x14
= 69.23 cm
2
2
1
2
1
Page 5
1
Marking Scheme
Class X Session 2024-25
MATHEMATICS STANDARD (Code No.041)
TIME: 3 hours MAX.MARKS: 80
Q.No. Section A Marks
1. D) -6,6 1
2. B) -5 1
3. D) From a point inside a circle only two tangents can be drawn. 1
4. A) 7 1
5. B) 20 cm 1
6.
A)
11
9
1
7. C) 140
?? 1
8.
B) 8?? 2
- 20
1
9.
C) 30
1
10.
B) isosceles and similar
1
11.
A) Irrational and distinct
1
12.
C)
3
v3
1
13.
B)
594
7
1
14.
B)
3
8
1
15.
B) (-4, 0)
1
16.
A) median
1
17.
C) (3,0)
1
18.
D)
3
26
1
19. B) 1
20. D) 1
2
Section B
21. (A)
(B)
480 = 2
5
x 3 x 5
720 = 2
4
x 3
2
x 5
LCM (480,720) = 2
5
x 3
2
x 5 = 1440
HCF (480, 720) = 2
4
x 3x 5 = 240
OR
85 = 5x17, 238 = 2x7x17
HCF( 85, 238) = 17
17 = 85xm -238
m = 3
½
½
½
½
1
1
22.(A)
(B)
Total number of possible outcomes = 6x6=36
For a product to be odd, both the numbers should be odd.
Favourable outcomes are (7,7) (7,9) (7,11) (9,7) (9,9) (9, 11) (11,7) (11,9)
(11,11)
no. of favourable outcomes = 9
P (product is odd) =
9
36
or
1
4
OR
Total number of three-digit numbers = 900.
Numbers with hundredth digit 8 & and unit’s digit 5 are 805,815,
825,....,895
Number of favourable outcomes = 10
P(selecting one such number) =
10
900
or
1
90
½
1
½
½
1
½
23.
2 (
v3
2
)
2
- (
1
v3
)
2
(v2)
2
=
7
12
1 ½
½
24 Let the required point be (x,0)
v(8 - ?? )
2
+ 25 = v41
=> (8 - ?? )
2
= 16
=> 8 - x =?4
=> x = 4 , 12
Two points on the x-axis are (4,0) & (12,0).
½
½
1
3
25.
AB = v(3 + 5)
2
+ (0 - 6)
2
= 10
BC = v(9 - 3)
2
+ (8 - 0)
2
= 10
AC = v(9 + 5)
2
+ (8 - 6)
2
= 10v2
Since AB = BC, therefore ?? ABC is isosceles
½
½
½
½
Section C
26.(A)
(B)
Since D, E, F are the mid points of BC, CA, AB respectively
Therefore, EF||BC, DF||AC, DE||AB
BDEF is a parallelogram
? 1= ? 2 & ? 3 = ? 4
?? FBD ~ ?? DEF
Also, DCEF is a parallelogram
? 3= ? 6 & ? 1 = ? 2 ( proved above)
?? DEF ~ ?? ABC
OR
Since PQ//BC therefore ?? APR ~ ?? ABD
=>
????
????
=
????
????
…….. (i)
1
1
1
1
A
P
R
Q
B
D
C
1
2
3
4
5
6
4
?? AQR ~ ?? ACD
=>
????
????
=
????
????
…….. (ii)
Now,
????
????
=
????
????
……….(iii)
Using (i), (ii) & (iii),
????
????
=
????
????
But, BD = DC
=> PR = RQ or AD bisects PQ
1
1
27. Let the numbers be x and 18-x.
1
?? +
1
18-?? =
9
40
=> 18×40 = 9x(18-?? )
=> ?? 2
-18 ?? + 80=0
=> (?? -10)(?? -8)=0
=> ?? =10, 8.
=> 18-?? =8, 10
Hence two numbers are 8 and 10.
½
1
1
½
28.
From given polynomial ?? + ?? =
5
6
, ???? =
1
6
?? 2
+ ?? 2
= (
5
6
)
2
- 2 x
1
6
=
13
36
And ?? 2
?? 2
= (
1
6
)
2
=
1
36
?? 2
-
13
36
?? +
1
36
? Required polynomial is 36?? 2
-13 ?? +1
1
1
½
½
29. (???????? + ?????? ?? )
2
+ (???????? - ?????? ?? )
2
= 2 ( ?????? 2
?? + ?????? 2
?? ) = 2
=> (1)
2
+ (???????? - ?????? ?? )
2
= 2
=> (???????? - ?????? ?? )
2
= 1
=> ???????? - ?????? ?? = ? 1
1 ½
1
½
30.(A)
(B)
Angle described by minute hand in 5 min = 30°.
length of minute hand =18 cm = r.
Area swept by minute hand in 35 minutes
=(
22
7
x18x18×
30
360
) x 7
= 594 ???? 2
.
OR
Area of minor segment = Ar. Sector OAB- Ar. ?? OAB
=
90
360
x
22
7
× 14x14 -
v3
4
x 14x14
= 69.23 cm
2
2
1
2
1
5
31. Let v3 be a rational number.
? v3 =
?? ?? , where q?0 and let p & q be co-prime.
3q
2
= p
2
? p
2
is divisible by 3 ? p is divisible by 3 ----- (i)
? p = 3a, where ‘a’ is some integer
9a
2
= 3q
2
? q
2
= 3a
2
?q
2
is divisible by 3 ? q is divisible by 3----- (ii)
(i) and (ii) leads to contradiction as ‘p’ and ‘q’ are co-prime.
½
1
1
½
Section D
32.(A)
(B)
x+2y=3, 2x-3y+8=0
Correct graph of each equation
Solution x=-1 and y=2
OR
Let car I starts from A with speed x km/hr and car Il Starts from B with
speed y km/hr (x>y)
Case I- when cars are moving in the same direction.
Distance covered by car I in 9 hours = 9x.
Distance covered by car II in 9 hours = 9y
Therefore 9 (x-y) = 180
=> x-y= 20 ……………. (i)
case II- when cars are moving in opposite directions.
Distance covered by Car I in 1 hour = x
Distance covered by Car II in 1 hour = y
Therefore x + y=180 ………….. (ii)
Solving (i) and (ii) we get, x=100 km/hr, y=80 km/hr.
2+2 = 4
1
2
2
1
33. Correct given, to prove, construction, figure
Correct proof
AR = AQ = 7cm
BP = BR = AB-AR = 3cm
CP =CQ = 5cm
BC = BP+PC = 3+5 = 8 cm
1
2
½
½
½
½
Read More