JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Detailed Notes: Inverse Trigonometry Functions

Detailed Notes: Inverse Trigonometry Functions | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


  
 
 
 
126 Inverse Trigonometrical Functions  
 
 
 
 
 
 The inverse of a function B A f ? : exists if f is one-one onto i.e., a bijection and is given by 
x y f y x f ? ? ?
?
) ( ) (
1
. 
 Consider the sine function with domain R and range [–1, 1]. Clearly this function is not a 
bijection and so it is not invertible. If we restrict the domain of it in such a way that it becomes 
one–one, then it would become invertible. If we consider sine as a function with domain 
?
?
?
?
?
?
?
2
,
2
? ?
 and co-domain [–1, 1], then it is a bijection and therefore, invertible. The inverse of 
sine function is defined as x x ? ? ?
?
? ? sin sin
1
, where 
?
?
?
?
?
?
? ?
2
,
2
? ?
? and ] 1 , 1 [ ? ? x . 
 5.1 Properties of Inverse Trigonometric Functions. 
 (1) Meaning of inverse function  
 (i) x ? ? sin  ? ? ?
?
x
1
sin (ii) x ? ? cos  ? ? ?
?
x
1
cos (iii)  x ? ? tan  ? ? ?
?
x
1
tan  
 (iv) x ? ? cot  ? ? ?
?
x
1
cot (v) x ? ? sec  ? ? ?
?
x
1
sec (vi)  x ? ? cosec ?  ? ?
?
x
1
cosec 
 (2) Domain and range of inverse functions  
 (i) If , sin x y ? then , sin
1
x y
?
? under certain condition.  
  ; 1 sin 1 ? ? ? y but x y ? sin . 1 1 ? ? ? ? x  
 Again, 
2
1 sin
?
? ? ? ? ? y y and 
2
1 sin
?
? ? ? y y . 
 Keeping in mind numerically smallest angles or real numbers. 
2 2
? ?
? ? ? ? y 
 These restrictions on the values of x and y provide us with the domain and range for the 
function x y
1
sin
?
? . 
 i.e., Domain : ] 1 , 1 [ ? ? x 
  Range: 
?
?
?
?
?
?
? ?
2
,
2
? ?
y 
 (ii) Let x y ? cos , then x y
1
cos
?
? , under certain conditions 1 cos 1 ? ? ? y 
  ?  1 1 ? ? ? x 
   ? ? ? ? ? y y 1 cos 
   0 1 cos ? ? ? y y 
 ? ? ? ? y 0 {as cos x is a decreasing function in [ ? , 0 ];   
 hence 0 cos cos cos ? ? y ? 
 These restrictions on the values of x and y provide us the domain and range for the function 
x y
1
cos
?
? . 
Y 
y = cos
–
1
x  
O 
(–1, 
?/2)  
X 
(1, 0)  
Y 
(1, ?/2) 
y = sin
–
1
x  
O 
(–1, –
?/2)  
X 
Page 2


  
 
 
 
126 Inverse Trigonometrical Functions  
 
 
 
 
 
 The inverse of a function B A f ? : exists if f is one-one onto i.e., a bijection and is given by 
x y f y x f ? ? ?
?
) ( ) (
1
. 
 Consider the sine function with domain R and range [–1, 1]. Clearly this function is not a 
bijection and so it is not invertible. If we restrict the domain of it in such a way that it becomes 
one–one, then it would become invertible. If we consider sine as a function with domain 
?
?
?
?
?
?
?
2
,
2
? ?
 and co-domain [–1, 1], then it is a bijection and therefore, invertible. The inverse of 
sine function is defined as x x ? ? ?
?
? ? sin sin
1
, where 
?
?
?
?
?
?
? ?
2
,
2
? ?
? and ] 1 , 1 [ ? ? x . 
 5.1 Properties of Inverse Trigonometric Functions. 
 (1) Meaning of inverse function  
 (i) x ? ? sin  ? ? ?
?
x
1
sin (ii) x ? ? cos  ? ? ?
?
x
1
cos (iii)  x ? ? tan  ? ? ?
?
x
1
tan  
 (iv) x ? ? cot  ? ? ?
?
x
1
cot (v) x ? ? sec  ? ? ?
?
x
1
sec (vi)  x ? ? cosec ?  ? ?
?
x
1
cosec 
 (2) Domain and range of inverse functions  
 (i) If , sin x y ? then , sin
1
x y
?
? under certain condition.  
  ; 1 sin 1 ? ? ? y but x y ? sin . 1 1 ? ? ? ? x  
 Again, 
2
1 sin
?
? ? ? ? ? y y and 
2
1 sin
?
? ? ? y y . 
 Keeping in mind numerically smallest angles or real numbers. 
2 2
? ?
? ? ? ? y 
 These restrictions on the values of x and y provide us with the domain and range for the 
function x y
1
sin
?
? . 
 i.e., Domain : ] 1 , 1 [ ? ? x 
  Range: 
?
?
?
?
?
?
? ?
2
,
2
? ?
y 
 (ii) Let x y ? cos , then x y
1
cos
?
? , under certain conditions 1 cos 1 ? ? ? y 
  ?  1 1 ? ? ? x 
   ? ? ? ? ? y y 1 cos 
   0 1 cos ? ? ? y y 
 ? ? ? ? y 0 {as cos x is a decreasing function in [ ? , 0 ];   
 hence 0 cos cos cos ? ? y ? 
 These restrictions on the values of x and y provide us the domain and range for the function 
x y
1
cos
?
? . 
Y 
y = cos
–
1
x  
O 
(–1, 
?/2)  
X 
(1, 0)  
Y 
(1, ?/2) 
y = sin
–
1
x  
O 
(–1, –
?/2)  
X 
Inverse Trigonometrical Functions 127 
 i.e.  Domain:  ] 1 , 1 [ ? ? x 
   Range : ] , 0 [ ? ? y  
 (iii) If x y ? tan , then , tan
1
x y
?
? under certain conditions.  
  Here, R x R y ? ? ? tan , 
2 2
tan
? ?
? ? ? ? ? ? ? ? ? y y 
  Thus,  Domain R x ? ;   
   Range ?
?
?
?
?
?
? ?
2
,
2
? ?
y 
(iv) If , cot x y ? then x y
1
cot
?
? 
under certain conditions, ; cot R x R y ? ? ? 
? ? ? ? ? ? ? ? ? y y 0 cot 
 These conditions on x and y make the function, x y ? cot one-one 
and onto so that the inverse function exists. i.e., x y
1
cot
?
? is 
meaningful. 
 ? Domain : R x ? 
  Range : ) , 0 ( ? ? y 
 (v) If , sec x y ? then , sec
1
x y
?
? where 1 | | ? x and 
2
, 0
?
? ? ? ? y y 
  Here,  Domain: ) 1 , 1 ( ? ? ? R x 
   Range:  
?
?
?
?
?
?
? ?
2
] , 0 [
?
? y 
 (vi) If x y ? cosec , then x y
1
cosec
?
? 
  Where 1 | | ? x and 0 ,
2 2
? ? ? ? y y
? ?
 
  Here,  Domain ) 1 , 1 ( ? ? ? R 
   Range } 0 {
2
,
2
?
?
?
?
?
?
?
? ?
? ?
 
  Function  Domain (D) Range (R) 
x
1
sin
?
 
1 1 ? ? ? x or ] 1 , 1 [ ? 
2 2
?
?
?
? ? ? or 
?
?
?
?
?
?
?
2
,
2
? ?
 
x
1
cos
?
 
1 1 ? ? ? x or ] 1 , 1 [ ? ? ? ? ? 0 or ] , 0 [ ? 
x
1
tan
?
 
? ? ? ?? x i.e., R x ? or 
) , ( ? ?? 
2 2
?
?
?
? ? ? or ?
?
?
?
?
?
?
2
,
2
? ?
 
x
1
cot
?
 
? ? ? ?? x i.e., R x ? or ? ? ? ? 0 or ) , 0 ( ? 
y 
 
O ?
x ?
y = tan
–
1
x  
y = – ?/2  
y = 
? ?2  
x 
y = sec
–
1
x  
y = ?/2  
( –1, ?)  
O (1,0
)  
x 
y = cosec
–
1
x  
(1, 
?/2)  
y  
O ? (–1, –
?)  
y = ? 
O 
x ?
(0, 
?/2)  
y = cot
–
1
x  
Page 3


  
 
 
 
126 Inverse Trigonometrical Functions  
 
 
 
 
 
 The inverse of a function B A f ? : exists if f is one-one onto i.e., a bijection and is given by 
x y f y x f ? ? ?
?
) ( ) (
1
. 
 Consider the sine function with domain R and range [–1, 1]. Clearly this function is not a 
bijection and so it is not invertible. If we restrict the domain of it in such a way that it becomes 
one–one, then it would become invertible. If we consider sine as a function with domain 
?
?
?
?
?
?
?
2
,
2
? ?
 and co-domain [–1, 1], then it is a bijection and therefore, invertible. The inverse of 
sine function is defined as x x ? ? ?
?
? ? sin sin
1
, where 
?
?
?
?
?
?
? ?
2
,
2
? ?
? and ] 1 , 1 [ ? ? x . 
 5.1 Properties of Inverse Trigonometric Functions. 
 (1) Meaning of inverse function  
 (i) x ? ? sin  ? ? ?
?
x
1
sin (ii) x ? ? cos  ? ? ?
?
x
1
cos (iii)  x ? ? tan  ? ? ?
?
x
1
tan  
 (iv) x ? ? cot  ? ? ?
?
x
1
cot (v) x ? ? sec  ? ? ?
?
x
1
sec (vi)  x ? ? cosec ?  ? ?
?
x
1
cosec 
 (2) Domain and range of inverse functions  
 (i) If , sin x y ? then , sin
1
x y
?
? under certain condition.  
  ; 1 sin 1 ? ? ? y but x y ? sin . 1 1 ? ? ? ? x  
 Again, 
2
1 sin
?
? ? ? ? ? y y and 
2
1 sin
?
? ? ? y y . 
 Keeping in mind numerically smallest angles or real numbers. 
2 2
? ?
? ? ? ? y 
 These restrictions on the values of x and y provide us with the domain and range for the 
function x y
1
sin
?
? . 
 i.e., Domain : ] 1 , 1 [ ? ? x 
  Range: 
?
?
?
?
?
?
? ?
2
,
2
? ?
y 
 (ii) Let x y ? cos , then x y
1
cos
?
? , under certain conditions 1 cos 1 ? ? ? y 
  ?  1 1 ? ? ? x 
   ? ? ? ? ? y y 1 cos 
   0 1 cos ? ? ? y y 
 ? ? ? ? y 0 {as cos x is a decreasing function in [ ? , 0 ];   
 hence 0 cos cos cos ? ? y ? 
 These restrictions on the values of x and y provide us the domain and range for the function 
x y
1
cos
?
? . 
Y 
y = cos
–
1
x  
O 
(–1, 
?/2)  
X 
(1, 0)  
Y 
(1, ?/2) 
y = sin
–
1
x  
O 
(–1, –
?/2)  
X 
Inverse Trigonometrical Functions 127 
 i.e.  Domain:  ] 1 , 1 [ ? ? x 
   Range : ] , 0 [ ? ? y  
 (iii) If x y ? tan , then , tan
1
x y
?
? under certain conditions.  
  Here, R x R y ? ? ? tan , 
2 2
tan
? ?
? ? ? ? ? ? ? ? ? y y 
  Thus,  Domain R x ? ;   
   Range ?
?
?
?
?
?
? ?
2
,
2
? ?
y 
(iv) If , cot x y ? then x y
1
cot
?
? 
under certain conditions, ; cot R x R y ? ? ? 
? ? ? ? ? ? ? ? ? y y 0 cot 
 These conditions on x and y make the function, x y ? cot one-one 
and onto so that the inverse function exists. i.e., x y
1
cot
?
? is 
meaningful. 
 ? Domain : R x ? 
  Range : ) , 0 ( ? ? y 
 (v) If , sec x y ? then , sec
1
x y
?
? where 1 | | ? x and 
2
, 0
?
? ? ? ? y y 
  Here,  Domain: ) 1 , 1 ( ? ? ? R x 
   Range:  
?
?
?
?
?
?
? ?
2
] , 0 [
?
? y 
 (vi) If x y ? cosec , then x y
1
cosec
?
? 
  Where 1 | | ? x and 0 ,
2 2
? ? ? ? y y
? ?
 
  Here,  Domain ) 1 , 1 ( ? ? ? R 
   Range } 0 {
2
,
2
?
?
?
?
?
?
?
? ?
? ?
 
  Function  Domain (D) Range (R) 
x
1
sin
?
 
1 1 ? ? ? x or ] 1 , 1 [ ? 
2 2
?
?
?
? ? ? or 
?
?
?
?
?
?
?
2
,
2
? ?
 
x
1
cos
?
 
1 1 ? ? ? x or ] 1 , 1 [ ? ? ? ? ? 0 or ] , 0 [ ? 
x
1
tan
?
 
? ? ? ?? x i.e., R x ? or 
) , ( ? ?? 
2 2
?
?
?
? ? ? or ?
?
?
?
?
?
?
2
,
2
? ?
 
x
1
cot
?
 
? ? ? ?? x i.e., R x ? or ? ? ? ? 0 or ) , 0 ( ? 
y 
 
O ?
x ?
y = tan
–
1
x  
y = – ?/2  
y = 
? ?2  
x 
y = sec
–
1
x  
y = ?/2  
( –1, ?)  
O (1,0
)  
x 
y = cosec
–
1
x  
(1, 
?/2)  
y  
O ? (–1, –
?)  
y = ? 
O 
x ?
(0, 
?/2)  
y = cot
–
1
x  
  
 
 
 
128 Inverse Trigonometrical Functions  
) , ( ? ?? 
x
1
sec
?
 
1 , 1 ? ? ? x x or  ) , 1 [ ] 1 , ( ? ? ? ?? 
? ?
?
? ? ? ? 0 ,
2
 or 
?
?
?
?
?
?
? ?
?
?
?
?
?
?
? ?
,
2 2
, 0 
x
1
cosec
?
 
1 , 1 ? ? ? x x or ) , 1 [ ] 1 , ( ? ? ? ?? 
2 2
, 0
?
?
?
? ? ? ? ? or 
?
?
?
?
?
?
? ?
?
?
?
?
?
?
2
, 0 0 ,
2
? ?
 
 (3) ? ? ?
?
) (sin sin
1
,  Provided that 
2 2
?
?
?
? ? ? ,   ? ? ?
?
) (cos cos
1
,   Provided that 
? ? ? ? 0 
  ? ? ?
?
) (tan tan
1
,  Provided that 
2 2
?
?
?
? ? ? ,  ? ? ?
?
) (cot cot
1
,   Provided that ? ? ? ? 0  
  ? ? ?
?
) (sec sec
1
,  Provided that 
2
0
?
? ? ? or ? ?
?
? ?
2
  
  , ) cosec ( cosec
1
? ? ?
?
 Provided that 0
2
? ? ? ?
?
 or 
2
0
?
? ? ? 
 (4) , ) sin(sin
1
x x ?
?
 Provided that 1 1 ? ? ? x ,   , ) cos(cos
1
x x ?
?
 Provided that 1 1 ? ? ? x 
  tan , ) (tan
1
x x ?
?
 Provided that ? ? ? ? ? x  , ) cot(cot
1
x x ?
?
 Provided that 
? ? ? ? ? x 
  , ) sec(sec
1
x x ?
?
 Provided that 1 ? ? ? ? ? x or ? ? ? x 1 
  , ) cosec ( cosec 
–1
x x ? Provided that 1 ? ? ? ? ? x or ? ? ? x 1 
 (5) x x
1 1
sin ) ( sin
? ?
? ? ?  x x
1 1
cos ) ( cos
? ?
? ? ? ? , x x
1 1
tan ) ( tan
? ?
? ? ?     
 x x
1 1
cot ) ( cot
? ?
? ? ? ?  x x
1 1
sec ) ( sec
? ?
? ? ? ?  x x
–1 1
cosec ) ( cosec ? ? ?
?
 
 (6) 
2
cos sin
1 1
?
? ?
? ?
x x , for all ] 1 , 1 [ ? ? x   
2
cot tan
1 1
?
? ?
? ?
x x , for all R x ? 
  
2
cosec sec
1 - 1
?
? ?
?
x x ,  for all ) , 1 [ ] 1 , ( ? ? ? ?? ? x 
 
Important Tips 
 
? Here; x x x
1 1 1
tan , cosec , sin
? ? ?
 belong to I and IV Quadrant. 
? Here; x x x
1 1 1
cot , sec , cos
? ? ?
 belong to I and II Quadrant.  
? I Quadrant is common to all the inverse functions. 
? III Quadrant is not used in inverse function. 
? IV Quadrant is used in the clockwise direction i.e., 0
2
? ? ? y
?
 
 
 
 (7) Principal values for inverse circular functions 
  
Principal values for 0 ? x Principal values for 0 ? x 
2
sin 0
1
?
? ?
?
x 0 sin
2
1
? ? ?
?
x
?
 
2
cos 0
1
?
? ?
?
x 
?
?
? ?
?
x
1
cos
2
 
I 
IV 
– ? ? ? ?
?/2 
I 
0 ? ?
II 
Page 4


  
 
 
 
126 Inverse Trigonometrical Functions  
 
 
 
 
 
 The inverse of a function B A f ? : exists if f is one-one onto i.e., a bijection and is given by 
x y f y x f ? ? ?
?
) ( ) (
1
. 
 Consider the sine function with domain R and range [–1, 1]. Clearly this function is not a 
bijection and so it is not invertible. If we restrict the domain of it in such a way that it becomes 
one–one, then it would become invertible. If we consider sine as a function with domain 
?
?
?
?
?
?
?
2
,
2
? ?
 and co-domain [–1, 1], then it is a bijection and therefore, invertible. The inverse of 
sine function is defined as x x ? ? ?
?
? ? sin sin
1
, where 
?
?
?
?
?
?
? ?
2
,
2
? ?
? and ] 1 , 1 [ ? ? x . 
 5.1 Properties of Inverse Trigonometric Functions. 
 (1) Meaning of inverse function  
 (i) x ? ? sin  ? ? ?
?
x
1
sin (ii) x ? ? cos  ? ? ?
?
x
1
cos (iii)  x ? ? tan  ? ? ?
?
x
1
tan  
 (iv) x ? ? cot  ? ? ?
?
x
1
cot (v) x ? ? sec  ? ? ?
?
x
1
sec (vi)  x ? ? cosec ?  ? ?
?
x
1
cosec 
 (2) Domain and range of inverse functions  
 (i) If , sin x y ? then , sin
1
x y
?
? under certain condition.  
  ; 1 sin 1 ? ? ? y but x y ? sin . 1 1 ? ? ? ? x  
 Again, 
2
1 sin
?
? ? ? ? ? y y and 
2
1 sin
?
? ? ? y y . 
 Keeping in mind numerically smallest angles or real numbers. 
2 2
? ?
? ? ? ? y 
 These restrictions on the values of x and y provide us with the domain and range for the 
function x y
1
sin
?
? . 
 i.e., Domain : ] 1 , 1 [ ? ? x 
  Range: 
?
?
?
?
?
?
? ?
2
,
2
? ?
y 
 (ii) Let x y ? cos , then x y
1
cos
?
? , under certain conditions 1 cos 1 ? ? ? y 
  ?  1 1 ? ? ? x 
   ? ? ? ? ? y y 1 cos 
   0 1 cos ? ? ? y y 
 ? ? ? ? y 0 {as cos x is a decreasing function in [ ? , 0 ];   
 hence 0 cos cos cos ? ? y ? 
 These restrictions on the values of x and y provide us the domain and range for the function 
x y
1
cos
?
? . 
Y 
y = cos
–
1
x  
O 
(–1, 
?/2)  
X 
(1, 0)  
Y 
(1, ?/2) 
y = sin
–
1
x  
O 
(–1, –
?/2)  
X 
Inverse Trigonometrical Functions 127 
 i.e.  Domain:  ] 1 , 1 [ ? ? x 
   Range : ] , 0 [ ? ? y  
 (iii) If x y ? tan , then , tan
1
x y
?
? under certain conditions.  
  Here, R x R y ? ? ? tan , 
2 2
tan
? ?
? ? ? ? ? ? ? ? ? y y 
  Thus,  Domain R x ? ;   
   Range ?
?
?
?
?
?
? ?
2
,
2
? ?
y 
(iv) If , cot x y ? then x y
1
cot
?
? 
under certain conditions, ; cot R x R y ? ? ? 
? ? ? ? ? ? ? ? ? y y 0 cot 
 These conditions on x and y make the function, x y ? cot one-one 
and onto so that the inverse function exists. i.e., x y
1
cot
?
? is 
meaningful. 
 ? Domain : R x ? 
  Range : ) , 0 ( ? ? y 
 (v) If , sec x y ? then , sec
1
x y
?
? where 1 | | ? x and 
2
, 0
?
? ? ? ? y y 
  Here,  Domain: ) 1 , 1 ( ? ? ? R x 
   Range:  
?
?
?
?
?
?
? ?
2
] , 0 [
?
? y 
 (vi) If x y ? cosec , then x y
1
cosec
?
? 
  Where 1 | | ? x and 0 ,
2 2
? ? ? ? y y
? ?
 
  Here,  Domain ) 1 , 1 ( ? ? ? R 
   Range } 0 {
2
,
2
?
?
?
?
?
?
?
? ?
? ?
 
  Function  Domain (D) Range (R) 
x
1
sin
?
 
1 1 ? ? ? x or ] 1 , 1 [ ? 
2 2
?
?
?
? ? ? or 
?
?
?
?
?
?
?
2
,
2
? ?
 
x
1
cos
?
 
1 1 ? ? ? x or ] 1 , 1 [ ? ? ? ? ? 0 or ] , 0 [ ? 
x
1
tan
?
 
? ? ? ?? x i.e., R x ? or 
) , ( ? ?? 
2 2
?
?
?
? ? ? or ?
?
?
?
?
?
?
2
,
2
? ?
 
x
1
cot
?
 
? ? ? ?? x i.e., R x ? or ? ? ? ? 0 or ) , 0 ( ? 
y 
 
O ?
x ?
y = tan
–
1
x  
y = – ?/2  
y = 
? ?2  
x 
y = sec
–
1
x  
y = ?/2  
( –1, ?)  
O (1,0
)  
x 
y = cosec
–
1
x  
(1, 
?/2)  
y  
O ? (–1, –
?)  
y = ? 
O 
x ?
(0, 
?/2)  
y = cot
–
1
x  
  
 
 
 
128 Inverse Trigonometrical Functions  
) , ( ? ?? 
x
1
sec
?
 
1 , 1 ? ? ? x x or  ) , 1 [ ] 1 , ( ? ? ? ?? 
? ?
?
? ? ? ? 0 ,
2
 or 
?
?
?
?
?
?
? ?
?
?
?
?
?
?
? ?
,
2 2
, 0 
x
1
cosec
?
 
1 , 1 ? ? ? x x or ) , 1 [ ] 1 , ( ? ? ? ?? 
2 2
, 0
?
?
?
? ? ? ? ? or 
?
?
?
?
?
?
? ?
?
?
?
?
?
?
2
, 0 0 ,
2
? ?
 
 (3) ? ? ?
?
) (sin sin
1
,  Provided that 
2 2
?
?
?
? ? ? ,   ? ? ?
?
) (cos cos
1
,   Provided that 
? ? ? ? 0 
  ? ? ?
?
) (tan tan
1
,  Provided that 
2 2
?
?
?
? ? ? ,  ? ? ?
?
) (cot cot
1
,   Provided that ? ? ? ? 0  
  ? ? ?
?
) (sec sec
1
,  Provided that 
2
0
?
? ? ? or ? ?
?
? ?
2
  
  , ) cosec ( cosec
1
? ? ?
?
 Provided that 0
2
? ? ? ?
?
 or 
2
0
?
? ? ? 
 (4) , ) sin(sin
1
x x ?
?
 Provided that 1 1 ? ? ? x ,   , ) cos(cos
1
x x ?
?
 Provided that 1 1 ? ? ? x 
  tan , ) (tan
1
x x ?
?
 Provided that ? ? ? ? ? x  , ) cot(cot
1
x x ?
?
 Provided that 
? ? ? ? ? x 
  , ) sec(sec
1
x x ?
?
 Provided that 1 ? ? ? ? ? x or ? ? ? x 1 
  , ) cosec ( cosec 
–1
x x ? Provided that 1 ? ? ? ? ? x or ? ? ? x 1 
 (5) x x
1 1
sin ) ( sin
? ?
? ? ?  x x
1 1
cos ) ( cos
? ?
? ? ? ? , x x
1 1
tan ) ( tan
? ?
? ? ?     
 x x
1 1
cot ) ( cot
? ?
? ? ? ?  x x
1 1
sec ) ( sec
? ?
? ? ? ?  x x
–1 1
cosec ) ( cosec ? ? ?
?
 
 (6) 
2
cos sin
1 1
?
? ?
? ?
x x , for all ] 1 , 1 [ ? ? x   
2
cot tan
1 1
?
? ?
? ?
x x , for all R x ? 
  
2
cosec sec
1 - 1
?
? ?
?
x x ,  for all ) , 1 [ ] 1 , ( ? ? ? ?? ? x 
 
Important Tips 
 
? Here; x x x
1 1 1
tan , cosec , sin
? ? ?
 belong to I and IV Quadrant. 
? Here; x x x
1 1 1
cot , sec , cos
? ? ?
 belong to I and II Quadrant.  
? I Quadrant is common to all the inverse functions. 
? III Quadrant is not used in inverse function. 
? IV Quadrant is used in the clockwise direction i.e., 0
2
? ? ? y
?
 
 
 
 (7) Principal values for inverse circular functions 
  
Principal values for 0 ? x Principal values for 0 ? x 
2
sin 0
1
?
? ?
?
x 0 sin
2
1
? ? ?
?
x
?
 
2
cos 0
1
?
? ?
?
x 
?
?
? ?
?
x
1
cos
2
 
I 
IV 
– ? ? ? ?
?/2 
I 
0 ? ?
II 
 
 
 
 
Inverse Trigonometrical Functions 129 
2
tan 0
1
?
? ?
?
x 0 tan
2
1
? ? ?
?
x
?
 
2
cot 0
1
?
? ?
?
x 
?
?
? ?
?
x
1
cot
2
 
2
sec 0
1
?
? ?
?
x ?
?
? ?
?
x
1
sec
2
 
2
cosec 0
1
?
? ?
?
x 
0 cosec
2
1
? ? ?
?
x
?
 
    
 Thus ,
6 2
1
sin
1
?
? ?
?
?
?
?
?
?
not 
3
2
2
1
cos ;
6
5
1
? ?
? ?
?
?
?
?
?
?
?
 not 
3
4 ?
; 
3
) 3 ( tan
1
?
? ? ?
?
 not 
3
2 ?
; 
4
3
) 1 ( cot
1
?
? ?
?
 not 
4
?
? etc. 
 Note : ?  x x x
1 1 1
tan , cos , sin
? ? ?
 are also written as arc x sin , arc x cos and arc x tan respectively.  
      ?  It should be noted that if not otherwise stated only principal values of inverse 
circular functions are to be considered. 
(8) Conversion property : Let,  y x ?
?1
sin ?  y x sin ?  ?  ?
?
?
?
?
?
?
x
y
1
cosec  ?  ?
?
?
?
?
?
?
x
y
1
cosec
1 –
 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ? ?
? ? ? ? ?
x
x
x
x
x
x
x x
1
cosec
1
1
sec
1
cot
1
tan 1 cos sin
1 –
2
1
2
1
2
1 2 1 1
 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
? ? ?
? ? ? ? ?
2
1
2
1 – 1
2
1 2 1 1
1
cot
1
1
cosec
1
sec
1
tan 1 sin cos
x
x
x
x x
x
x x 
  
?
?
?
?
?
?
?
?
?
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ? ? ? ? ?
x
x
x
x
x x
x
x
2
1 2 1 1
2
1
2
1 1
1
cosec 1 sec
1
cot
1
1
cos
1
sin tan 
 Note :  ? x
x
1 1
cosec
1
sin
? ?
? ?
?
?
?
?
?
, for all ) , 1 [ ] 1 , ( ? ? ?? ? x 
           ? , sec
1
cos
1 1
x
x
? ?
? ?
?
?
?
?
?
 for all ) , 1 [ ] 1 , ( ? ? ?? ? x 
           ? 
?
?
?
? ? ?
?
? ?
?
?
?
?
?
?
?
?
0 for , cot
0 for , cot 1
tan
1
1
1
x x
x x
x ?
 
 (9) General values of inverse circular functions: We know that if ? ? ?is the smallest angle whose 
sine is x, then all the angles whose sine is x can be written as , ) 1 ( ?
n
nx ? ? where ,..... 2 , 1 , 0 ? n 
Therefore, the general value of x
1
sin
?
 can be taken as ? ?
n
n ) 1 ( ? ? . The general value of x
1
sin
?
 is 
denoted by x
1
sin
?
. 
 Thus, we have  
2 2
 and sin if 1, 1 , 1) ( sin
1
p
a
p
x a x a n p x
n
? ? ? ? ? ? ? ? ? ?
?
 
Similarly, general values of other inverse circular functions are given as follows: 
x 
1 
? ? ?– 
x
2
 
Page 5


  
 
 
 
126 Inverse Trigonometrical Functions  
 
 
 
 
 
 The inverse of a function B A f ? : exists if f is one-one onto i.e., a bijection and is given by 
x y f y x f ? ? ?
?
) ( ) (
1
. 
 Consider the sine function with domain R and range [–1, 1]. Clearly this function is not a 
bijection and so it is not invertible. If we restrict the domain of it in such a way that it becomes 
one–one, then it would become invertible. If we consider sine as a function with domain 
?
?
?
?
?
?
?
2
,
2
? ?
 and co-domain [–1, 1], then it is a bijection and therefore, invertible. The inverse of 
sine function is defined as x x ? ? ?
?
? ? sin sin
1
, where 
?
?
?
?
?
?
? ?
2
,
2
? ?
? and ] 1 , 1 [ ? ? x . 
 5.1 Properties of Inverse Trigonometric Functions. 
 (1) Meaning of inverse function  
 (i) x ? ? sin  ? ? ?
?
x
1
sin (ii) x ? ? cos  ? ? ?
?
x
1
cos (iii)  x ? ? tan  ? ? ?
?
x
1
tan  
 (iv) x ? ? cot  ? ? ?
?
x
1
cot (v) x ? ? sec  ? ? ?
?
x
1
sec (vi)  x ? ? cosec ?  ? ?
?
x
1
cosec 
 (2) Domain and range of inverse functions  
 (i) If , sin x y ? then , sin
1
x y
?
? under certain condition.  
  ; 1 sin 1 ? ? ? y but x y ? sin . 1 1 ? ? ? ? x  
 Again, 
2
1 sin
?
? ? ? ? ? y y and 
2
1 sin
?
? ? ? y y . 
 Keeping in mind numerically smallest angles or real numbers. 
2 2
? ?
? ? ? ? y 
 These restrictions on the values of x and y provide us with the domain and range for the 
function x y
1
sin
?
? . 
 i.e., Domain : ] 1 , 1 [ ? ? x 
  Range: 
?
?
?
?
?
?
? ?
2
,
2
? ?
y 
 (ii) Let x y ? cos , then x y
1
cos
?
? , under certain conditions 1 cos 1 ? ? ? y 
  ?  1 1 ? ? ? x 
   ? ? ? ? ? y y 1 cos 
   0 1 cos ? ? ? y y 
 ? ? ? ? y 0 {as cos x is a decreasing function in [ ? , 0 ];   
 hence 0 cos cos cos ? ? y ? 
 These restrictions on the values of x and y provide us the domain and range for the function 
x y
1
cos
?
? . 
Y 
y = cos
–
1
x  
O 
(–1, 
?/2)  
X 
(1, 0)  
Y 
(1, ?/2) 
y = sin
–
1
x  
O 
(–1, –
?/2)  
X 
Inverse Trigonometrical Functions 127 
 i.e.  Domain:  ] 1 , 1 [ ? ? x 
   Range : ] , 0 [ ? ? y  
 (iii) If x y ? tan , then , tan
1
x y
?
? under certain conditions.  
  Here, R x R y ? ? ? tan , 
2 2
tan
? ?
? ? ? ? ? ? ? ? ? y y 
  Thus,  Domain R x ? ;   
   Range ?
?
?
?
?
?
? ?
2
,
2
? ?
y 
(iv) If , cot x y ? then x y
1
cot
?
? 
under certain conditions, ; cot R x R y ? ? ? 
? ? ? ? ? ? ? ? ? y y 0 cot 
 These conditions on x and y make the function, x y ? cot one-one 
and onto so that the inverse function exists. i.e., x y
1
cot
?
? is 
meaningful. 
 ? Domain : R x ? 
  Range : ) , 0 ( ? ? y 
 (v) If , sec x y ? then , sec
1
x y
?
? where 1 | | ? x and 
2
, 0
?
? ? ? ? y y 
  Here,  Domain: ) 1 , 1 ( ? ? ? R x 
   Range:  
?
?
?
?
?
?
? ?
2
] , 0 [
?
? y 
 (vi) If x y ? cosec , then x y
1
cosec
?
? 
  Where 1 | | ? x and 0 ,
2 2
? ? ? ? y y
? ?
 
  Here,  Domain ) 1 , 1 ( ? ? ? R 
   Range } 0 {
2
,
2
?
?
?
?
?
?
?
? ?
? ?
 
  Function  Domain (D) Range (R) 
x
1
sin
?
 
1 1 ? ? ? x or ] 1 , 1 [ ? 
2 2
?
?
?
? ? ? or 
?
?
?
?
?
?
?
2
,
2
? ?
 
x
1
cos
?
 
1 1 ? ? ? x or ] 1 , 1 [ ? ? ? ? ? 0 or ] , 0 [ ? 
x
1
tan
?
 
? ? ? ?? x i.e., R x ? or 
) , ( ? ?? 
2 2
?
?
?
? ? ? or ?
?
?
?
?
?
?
2
,
2
? ?
 
x
1
cot
?
 
? ? ? ?? x i.e., R x ? or ? ? ? ? 0 or ) , 0 ( ? 
y 
 
O ?
x ?
y = tan
–
1
x  
y = – ?/2  
y = 
? ?2  
x 
y = sec
–
1
x  
y = ?/2  
( –1, ?)  
O (1,0
)  
x 
y = cosec
–
1
x  
(1, 
?/2)  
y  
O ? (–1, –
?)  
y = ? 
O 
x ?
(0, 
?/2)  
y = cot
–
1
x  
  
 
 
 
128 Inverse Trigonometrical Functions  
) , ( ? ?? 
x
1
sec
?
 
1 , 1 ? ? ? x x or  ) , 1 [ ] 1 , ( ? ? ? ?? 
? ?
?
? ? ? ? 0 ,
2
 or 
?
?
?
?
?
?
? ?
?
?
?
?
?
?
? ?
,
2 2
, 0 
x
1
cosec
?
 
1 , 1 ? ? ? x x or ) , 1 [ ] 1 , ( ? ? ? ?? 
2 2
, 0
?
?
?
? ? ? ? ? or 
?
?
?
?
?
?
? ?
?
?
?
?
?
?
2
, 0 0 ,
2
? ?
 
 (3) ? ? ?
?
) (sin sin
1
,  Provided that 
2 2
?
?
?
? ? ? ,   ? ? ?
?
) (cos cos
1
,   Provided that 
? ? ? ? 0 
  ? ? ?
?
) (tan tan
1
,  Provided that 
2 2
?
?
?
? ? ? ,  ? ? ?
?
) (cot cot
1
,   Provided that ? ? ? ? 0  
  ? ? ?
?
) (sec sec
1
,  Provided that 
2
0
?
? ? ? or ? ?
?
? ?
2
  
  , ) cosec ( cosec
1
? ? ?
?
 Provided that 0
2
? ? ? ?
?
 or 
2
0
?
? ? ? 
 (4) , ) sin(sin
1
x x ?
?
 Provided that 1 1 ? ? ? x ,   , ) cos(cos
1
x x ?
?
 Provided that 1 1 ? ? ? x 
  tan , ) (tan
1
x x ?
?
 Provided that ? ? ? ? ? x  , ) cot(cot
1
x x ?
?
 Provided that 
? ? ? ? ? x 
  , ) sec(sec
1
x x ?
?
 Provided that 1 ? ? ? ? ? x or ? ? ? x 1 
  , ) cosec ( cosec 
–1
x x ? Provided that 1 ? ? ? ? ? x or ? ? ? x 1 
 (5) x x
1 1
sin ) ( sin
? ?
? ? ?  x x
1 1
cos ) ( cos
? ?
? ? ? ? , x x
1 1
tan ) ( tan
? ?
? ? ?     
 x x
1 1
cot ) ( cot
? ?
? ? ? ?  x x
1 1
sec ) ( sec
? ?
? ? ? ?  x x
–1 1
cosec ) ( cosec ? ? ?
?
 
 (6) 
2
cos sin
1 1
?
? ?
? ?
x x , for all ] 1 , 1 [ ? ? x   
2
cot tan
1 1
?
? ?
? ?
x x , for all R x ? 
  
2
cosec sec
1 - 1
?
? ?
?
x x ,  for all ) , 1 [ ] 1 , ( ? ? ? ?? ? x 
 
Important Tips 
 
? Here; x x x
1 1 1
tan , cosec , sin
? ? ?
 belong to I and IV Quadrant. 
? Here; x x x
1 1 1
cot , sec , cos
? ? ?
 belong to I and II Quadrant.  
? I Quadrant is common to all the inverse functions. 
? III Quadrant is not used in inverse function. 
? IV Quadrant is used in the clockwise direction i.e., 0
2
? ? ? y
?
 
 
 
 (7) Principal values for inverse circular functions 
  
Principal values for 0 ? x Principal values for 0 ? x 
2
sin 0
1
?
? ?
?
x 0 sin
2
1
? ? ?
?
x
?
 
2
cos 0
1
?
? ?
?
x 
?
?
? ?
?
x
1
cos
2
 
I 
IV 
– ? ? ? ?
?/2 
I 
0 ? ?
II 
 
 
 
 
Inverse Trigonometrical Functions 129 
2
tan 0
1
?
? ?
?
x 0 tan
2
1
? ? ?
?
x
?
 
2
cot 0
1
?
? ?
?
x 
?
?
? ?
?
x
1
cot
2
 
2
sec 0
1
?
? ?
?
x ?
?
? ?
?
x
1
sec
2
 
2
cosec 0
1
?
? ?
?
x 
0 cosec
2
1
? ? ?
?
x
?
 
    
 Thus ,
6 2
1
sin
1
?
? ?
?
?
?
?
?
?
not 
3
2
2
1
cos ;
6
5
1
? ?
? ?
?
?
?
?
?
?
?
 not 
3
4 ?
; 
3
) 3 ( tan
1
?
? ? ?
?
 not 
3
2 ?
; 
4
3
) 1 ( cot
1
?
? ?
?
 not 
4
?
? etc. 
 Note : ?  x x x
1 1 1
tan , cos , sin
? ? ?
 are also written as arc x sin , arc x cos and arc x tan respectively.  
      ?  It should be noted that if not otherwise stated only principal values of inverse 
circular functions are to be considered. 
(8) Conversion property : Let,  y x ?
?1
sin ?  y x sin ?  ?  ?
?
?
?
?
?
?
x
y
1
cosec  ?  ?
?
?
?
?
?
?
x
y
1
cosec
1 –
 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ? ?
? ? ? ? ?
x
x
x
x
x
x
x x
1
cosec
1
1
sec
1
cot
1
tan 1 cos sin
1 –
2
1
2
1
2
1 2 1 1
 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
? ? ?
? ? ? ? ?
2
1
2
1 – 1
2
1 2 1 1
1
cot
1
1
cosec
1
sec
1
tan 1 sin cos
x
x
x
x x
x
x x 
  
?
?
?
?
?
?
?
?
?
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ? ? ? ? ?
x
x
x
x
x x
x
x
2
1 2 1 1
2
1
2
1 1
1
cosec 1 sec
1
cot
1
1
cos
1
sin tan 
 Note :  ? x
x
1 1
cosec
1
sin
? ?
? ?
?
?
?
?
?
, for all ) , 1 [ ] 1 , ( ? ? ?? ? x 
           ? , sec
1
cos
1 1
x
x
? ?
? ?
?
?
?
?
?
 for all ) , 1 [ ] 1 , ( ? ? ?? ? x 
           ? 
?
?
?
? ? ?
?
? ?
?
?
?
?
?
?
?
?
0 for , cot
0 for , cot 1
tan
1
1
1
x x
x x
x ?
 
 (9) General values of inverse circular functions: We know that if ? ? ?is the smallest angle whose 
sine is x, then all the angles whose sine is x can be written as , ) 1 ( ?
n
nx ? ? where ,..... 2 , 1 , 0 ? n 
Therefore, the general value of x
1
sin
?
 can be taken as ? ?
n
n ) 1 ( ? ? . The general value of x
1
sin
?
 is 
denoted by x
1
sin
?
. 
 Thus, we have  
2 2
 and sin if 1, 1 , 1) ( sin
1
p
a
p
x a x a n p x
n
? ? ? ? ? ? ? ? ? ?
?
 
Similarly, general values of other inverse circular functions are given as follows: 
x 
1 
? ? ?– 
x
2
 
  
 
 
 
130 Inverse Trigonometrical Functions  
 
1 1 , 2 cos
1
? ? ? ? ?
?
x n x ? ? ;   If x ? ? cos , ? ? ? ? 0 
, tan
1
? ? ? ?
?
n x R x ? ;    If , tan x ? ? 
2 2
?
?
?
? ? ? 
, cot
1
? ? ? ?
?
n x R x ? ;     If x ? ? cot , ? ? ? ? 0 
? ? ? ?
?
n x 2 sec
1
, 1 ? x or 1 ? ? x ;   If 
2
 and 0 , sec
?
? ? ? ? ? ? ? x 
1 , ) 1 ( cosec
1
? ? ? ?
?
x n x
n
? ? or 1 ? ? x ;  If 0 and
2 2
, cosec ? ? ? ? ? x x
?
?
?
? 
 
Example: 1 The principal value of 
?
?
?
?
?
?
?
?
?
?
2
3
sin
1
 is      [Roorkee 1992] 
(a) 
3
2 ?
? (b) 
3
?
? (c) 
3
4 ?
 (d) 
8
5 ?
 
Solution: (b) 
3 3
sin sin
1
? ?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
    ?
?
?
?
?
?
? ? ?
?
2
sin
2
1
? ?
x ? 
Example: 2 ? ?
?
)] 30 [sec( sec
1 o
       [MP PET 1992] 
(a) – 
o
60 (b) 
o
30 ? (c) 
o
30 (d) 
o
150 
Solution: (c) 
o o o
30 ) 30 (sec sec )] 30 [sec( sec
1 1
? ? ?
? ?
. 
Example: 3 The principal value of ?
?
?
?
?
?
?
3
5
sin sin
1
?
 is     [MP PET 1996] 
(a) 
3
5 ?
 (b) 
3
5 ?
? (c) 
3
?
? (d) 
3
4 ?
 
Solution: (c) 
3 2
3
sin
3
5
sin sin
1 1
? ?
? ?
?
?
?
?
?
?
?
?
? ? ?
?
?
?
?
?
? ?
. 
Example: 4 The principal value of 
?
?
?
?
?
?
?
?
?
?
?
?
?
3
2
sin sin
1
?
 is      [IIT 1986] 
(a) 
3
2 ?
? (b) 
3
2 ?
 (c) 
3
4 ?
 (d) None of these 
Solution: (d) The principal vlaue of )]
3
2
[sin( sin
1
?
? ?
?
 = 
3 3
sin sin
1
? ?
? ?
?
?
?
?
?
?
. 
Example: 5 Considering only the principal values, if 
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
2
1
cot sin ) tan(cos
1 1
x , then x is equal to    [IIT 1991; AMU 2001] 
(a) 
5
1
 (b) 
5
2
 (c) 
5
3
 (d) 
3
5
 
Solution: (d) Put 
2
1
cot
2
1
cot
1
? ? ? ?
?
?
?
?
?
?
? ? 
? .
5
2
sin ? ? Put ? ?
?
x
1
cos then ? cos ? x 
Also  ? 
3
5
cos ,
5
2
tan ? ? ? ? ? ? x . 
Example: 6 If )] 600 ( [sin sin
1
? ? ?
?
? , then one of the possible value of ? is      [Kerala (Engg.)  2002] 
Read More
172 videos|472 docs|154 tests
Related Searches

Viva Questions

,

study material

,

pdf

,

mock tests for examination

,

Detailed Notes: Inverse Trigonometry Functions | Mathematics (Maths) for JEE Main & Advanced

,

past year papers

,

MCQs

,

practice quizzes

,

Semester Notes

,

ppt

,

Free

,

Summary

,

Extra Questions

,

Detailed Notes: Inverse Trigonometry Functions | Mathematics (Maths) for JEE Main & Advanced

,

Objective type Questions

,

Previous Year Questions with Solutions

,

shortcuts and tricks

,

Exam

,

video lectures

,

Sample Paper

,

Detailed Notes: Inverse Trigonometry Functions | Mathematics (Maths) for JEE Main & Advanced

,

Important questions

;