NEET Exam  >  NEET Notes  >  Physics Class 11  >  HC Verma Solutions: Chapter 8 - Work & Energy

HC Verma Solutions: Chapter 8 - Work & Energy | Physics Class 11 - NEET PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


8.1
SOLUTIONS TO CONCEPTS 
CHAPTER – 8
1. M = m
c
+ m
b
= 90kg
u =  6 km/h = 1.666 m/sec
v = 12 km/h = 3.333 m/sec
Increase in K.E. = ½ Mv
2
– ½ Mu
2
= ½ 90 × (3.333)
2
– ½ × 90 × (1.66)
2
= 494.5 – 124.6 = 374.8 ? 375 J
2. m
b
= 2 kg.
u = 10 m/sec
a = 3 m/aec
2
t = 5 sec
v = u + at = 10 + 3 I 5 = 25 m/sec.
?F.K.E = ½ mv
2
= ½ × 2 × 625 = 625 J.
3. F = 100 N
S = 4m, ? = 0°
? = S . F
? ?
???100 × 4 = 400 J ?
4. m = 5 kg
? = 30°
S = 10 m
F = mg
So, work done by the force of gravity
? = mgh = 5 × 9.8 × 5 = 245 J ?
5. F= 2.50N, S = 2.5m,  m =15g = 0.015kg.
So, w = F × S ? a = 
m
F
= 
015 . 0
5 . 2
= 
3
500
m/s
2
=F × S cos 0° (acting along the same line)
= 2.5 × 2.5 = 6.25J
Let the velocity of the body at b = U. Applying work-energy principle ½ mv
2
– 0 = 6.25
? V = 
015 . 0
2 25 . 6 ?
= 28.86 m/sec.
So, time taken to travel from A to B.
? t = 
a
u v ?
= 
500
3 86 . 28 ?
? Average power = 
t
W
= 
3 ) 86 . 28 (
500 25 . 6
?
?
= 36.1
6. Given 
j
ˆ
3 i
ˆ
2 r
1
? ?
?
j
ˆ
2 i
ˆ
3 r
2
? ?
So, displacement vector is given by,
2 1
r r r
? ? ?
? ? ? j
ˆ
i
ˆ
) j
ˆ
3 i
ˆ
2 ( ) j
ˆ
2 i
ˆ
3 ( r ? ? ? ? ? ?
?
u=1.66 m/s ?
90kg ? 90kg ?
v=3.33 m/s ?
u=10 m/s ?
2 kg ? a
?
= 3m/s
2
F ?
4m ?
R ?
100 N ?
mg ?
30°
?
5 ?
mg ?
F ?
5 log ?
10m ?
30°
?
v ? ?
A ? B ?
Page 2


8.1
SOLUTIONS TO CONCEPTS 
CHAPTER – 8
1. M = m
c
+ m
b
= 90kg
u =  6 km/h = 1.666 m/sec
v = 12 km/h = 3.333 m/sec
Increase in K.E. = ½ Mv
2
– ½ Mu
2
= ½ 90 × (3.333)
2
– ½ × 90 × (1.66)
2
= 494.5 – 124.6 = 374.8 ? 375 J
2. m
b
= 2 kg.
u = 10 m/sec
a = 3 m/aec
2
t = 5 sec
v = u + at = 10 + 3 I 5 = 25 m/sec.
?F.K.E = ½ mv
2
= ½ × 2 × 625 = 625 J.
3. F = 100 N
S = 4m, ? = 0°
? = S . F
? ?
???100 × 4 = 400 J ?
4. m = 5 kg
? = 30°
S = 10 m
F = mg
So, work done by the force of gravity
? = mgh = 5 × 9.8 × 5 = 245 J ?
5. F= 2.50N, S = 2.5m,  m =15g = 0.015kg.
So, w = F × S ? a = 
m
F
= 
015 . 0
5 . 2
= 
3
500
m/s
2
=F × S cos 0° (acting along the same line)
= 2.5 × 2.5 = 6.25J
Let the velocity of the body at b = U. Applying work-energy principle ½ mv
2
– 0 = 6.25
? V = 
015 . 0
2 25 . 6 ?
= 28.86 m/sec.
So, time taken to travel from A to B.
? t = 
a
u v ?
= 
500
3 86 . 28 ?
? Average power = 
t
W
= 
3 ) 86 . 28 (
500 25 . 6
?
?
= 36.1
6. Given 
j
ˆ
3 i
ˆ
2 r
1
? ?
?
j
ˆ
2 i
ˆ
3 r
2
? ?
So, displacement vector is given by,
2 1
r r r
? ? ?
? ? ? j
ˆ
i
ˆ
) j
ˆ
3 i
ˆ
2 ( ) j
ˆ
2 i
ˆ
3 ( r ? ? ? ? ? ?
?
u=1.66 m/s ?
90kg ? 90kg ?
v=3.33 m/s ?
u=10 m/s ?
2 kg ? a
?
= 3m/s
2
F ?
4m ?
R ?
100 N ?
mg ?
30°
?
5 ?
mg ?
F ?
5 log ?
10m ?
30°
?
v ? ?
A ? B ?
Chapter 8
8.2
So, work done = s F
?
?
? = 5 × 1 + 5(-1) = 0
7. m
b
= 2kg, s = 40m, a = 0.5m/sec
2
So, force applied by the man on the box
F = m
b
a = 2 × (0.5) = 1 N
? = FS = 1 × 40 = 40 J ?
8. Given that F= a + bx
Where a and b are constants.
So, work done by this force during this force during the displacement x = 0 and  x = d is given 
by 
W = 
? ?
? ?
d
0
d
0
dx ) bx a ( dx F = ax + (bx
2
/2) = [a + ½ bd] d
9. m
b
= 250g = .250 kg
? = 37°, S = 1m.
Frictional force f = ?R
mg sin ? = ? R ..(1)
mg cos ?? ..(2)
so, work done against ?R = ?RS cos 0° = mg sin ? S = 0.250 × 9.8 × 0.60 × 1 = 1.5 J
10. a = 
) m M ( 2
F
?
(given)
a) from fig (1)
ma = ?
k
R
1
and R
1
= mg
? ? =
1
R
ma
= 
g ) m M ( 2
F
?
b) Frictional force acting on the smaller block f = ?R = 
) m M ( 2
F m
mg
g ) m M ( 2
F
?
?
? ?
?
c) Work done w = fs s = d
w = d
) m M ( 2
mF
?
?
= 
) m M ( 2
mFd
?
?
11. Weight = 2000 N, S = 20m, ? = 0.2
a) R + Psin ? - 2000 = 0 ..(1)
P cos ? - 0.2 R =0 ..(2)
From (1) and (2) P cos ? – 0.2 (2000 – P sin ?)=0
P = 
? ? ? sin 2 . 0 cos
400
..(3)
So, work done by the person, W = PS cos ? = 
? ? ?
?
sin 2 . 0 cos
cos 8000
= 
? ? sin 2 . 0 1
8000
= 
? ? tan 5
40000
b) For minimum magnitude of force from equn(1)
d/d ? (cos ??+ 0.2 sin ?) = 0 ? tan ? = 0.2
putting the value in equn (3)
W = 
? ? tan 5
40000
= 
) 2 . 5 (
40000
= 7690 J
12. w = 100 N,  ? = 37°,  s = 2m
R ?
m b g ?
m b a ? F ?
R ?
?R ?
1 m ?
mg ?
37° ?
M
?
F ?
m
?
R 1 ?
? k R 1 ?
ma ?
mg ?
?R 1 ?
R 2 ?
f
?
ma ?
mg ?
?R 2 ?
? ?
R
?
P
?
0.2R ?
2000 N ?
Page 3


8.1
SOLUTIONS TO CONCEPTS 
CHAPTER – 8
1. M = m
c
+ m
b
= 90kg
u =  6 km/h = 1.666 m/sec
v = 12 km/h = 3.333 m/sec
Increase in K.E. = ½ Mv
2
– ½ Mu
2
= ½ 90 × (3.333)
2
– ½ × 90 × (1.66)
2
= 494.5 – 124.6 = 374.8 ? 375 J
2. m
b
= 2 kg.
u = 10 m/sec
a = 3 m/aec
2
t = 5 sec
v = u + at = 10 + 3 I 5 = 25 m/sec.
?F.K.E = ½ mv
2
= ½ × 2 × 625 = 625 J.
3. F = 100 N
S = 4m, ? = 0°
? = S . F
? ?
???100 × 4 = 400 J ?
4. m = 5 kg
? = 30°
S = 10 m
F = mg
So, work done by the force of gravity
? = mgh = 5 × 9.8 × 5 = 245 J ?
5. F= 2.50N, S = 2.5m,  m =15g = 0.015kg.
So, w = F × S ? a = 
m
F
= 
015 . 0
5 . 2
= 
3
500
m/s
2
=F × S cos 0° (acting along the same line)
= 2.5 × 2.5 = 6.25J
Let the velocity of the body at b = U. Applying work-energy principle ½ mv
2
– 0 = 6.25
? V = 
015 . 0
2 25 . 6 ?
= 28.86 m/sec.
So, time taken to travel from A to B.
? t = 
a
u v ?
= 
500
3 86 . 28 ?
? Average power = 
t
W
= 
3 ) 86 . 28 (
500 25 . 6
?
?
= 36.1
6. Given 
j
ˆ
3 i
ˆ
2 r
1
? ?
?
j
ˆ
2 i
ˆ
3 r
2
? ?
So, displacement vector is given by,
2 1
r r r
? ? ?
? ? ? j
ˆ
i
ˆ
) j
ˆ
3 i
ˆ
2 ( ) j
ˆ
2 i
ˆ
3 ( r ? ? ? ? ? ?
?
u=1.66 m/s ?
90kg ? 90kg ?
v=3.33 m/s ?
u=10 m/s ?
2 kg ? a
?
= 3m/s
2
F ?
4m ?
R ?
100 N ?
mg ?
30°
?
5 ?
mg ?
F ?
5 log ?
10m ?
30°
?
v ? ?
A ? B ?
Chapter 8
8.2
So, work done = s F
?
?
? = 5 × 1 + 5(-1) = 0
7. m
b
= 2kg, s = 40m, a = 0.5m/sec
2
So, force applied by the man on the box
F = m
b
a = 2 × (0.5) = 1 N
? = FS = 1 × 40 = 40 J ?
8. Given that F= a + bx
Where a and b are constants.
So, work done by this force during this force during the displacement x = 0 and  x = d is given 
by 
W = 
? ?
? ?
d
0
d
0
dx ) bx a ( dx F = ax + (bx
2
/2) = [a + ½ bd] d
9. m
b
= 250g = .250 kg
? = 37°, S = 1m.
Frictional force f = ?R
mg sin ? = ? R ..(1)
mg cos ?? ..(2)
so, work done against ?R = ?RS cos 0° = mg sin ? S = 0.250 × 9.8 × 0.60 × 1 = 1.5 J
10. a = 
) m M ( 2
F
?
(given)
a) from fig (1)
ma = ?
k
R
1
and R
1
= mg
? ? =
1
R
ma
= 
g ) m M ( 2
F
?
b) Frictional force acting on the smaller block f = ?R = 
) m M ( 2
F m
mg
g ) m M ( 2
F
?
?
? ?
?
c) Work done w = fs s = d
w = d
) m M ( 2
mF
?
?
= 
) m M ( 2
mFd
?
?
11. Weight = 2000 N, S = 20m, ? = 0.2
a) R + Psin ? - 2000 = 0 ..(1)
P cos ? - 0.2 R =0 ..(2)
From (1) and (2) P cos ? – 0.2 (2000 – P sin ?)=0
P = 
? ? ? sin 2 . 0 cos
400
..(3)
So, work done by the person, W = PS cos ? = 
? ? ?
?
sin 2 . 0 cos
cos 8000
= 
? ? sin 2 . 0 1
8000
= 
? ? tan 5
40000
b) For minimum magnitude of force from equn(1)
d/d ? (cos ??+ 0.2 sin ?) = 0 ? tan ? = 0.2
putting the value in equn (3)
W = 
? ? tan 5
40000
= 
) 2 . 5 (
40000
= 7690 J
12. w = 100 N,  ? = 37°,  s = 2m
R ?
m b g ?
m b a ? F ?
R ?
?R ?
1 m ?
mg ?
37° ?
M
?
F ?
m
?
R 1 ?
? k R 1 ?
ma ?
mg ?
?R 1 ?
R 2 ?
f
?
ma ?
mg ?
?R 2 ?
? ?
R
?
P
?
0.2R ?
2000 N ?
Chapter 8
8.3
Force F= mg sin 37° = 100 × 0.60 = 60 N
So, work done, when the force is parallel to incline.
w = Fs cos ? = 60 × 2 × cos ? = 120 J
In ?ABC AB= 2m
CB = 37°
so, h = C = 1m
?work done when the force in horizontal direction 
W = mgh = 100 × 1.2 = 120 J ?
13. m = 500 kg, s = 25m, u = 72km/h= 20 m/s, v = 0
(-a) = 
S 2
u v
2 2
?
? a = 
50
400
= 8m/sec
2
Frictional force f = ma = 500 × 8 = 4000 N
14. m = 500 kg, u = 0, v = 72 km/h = 20m/s
a = 
s 2
u v
2 2
?
=
50
400
= 8m/sec
2
force needed to accelerate the car F = ma = 500 × 8 = 4000 N
15. Given, v = a x (uniformly accelerated motion)
displacement s = d – 0 = d
putting x = 0, v
1
= 0
putting x = d, v
2
= a d
a = 
s 2
u v
2
2
2
2
?
= 
d 2
d a
2
= 
2
a
2
force f = ma = 
2
ma
2
work done w = FS cos ? = d
2
ma
2
? = 
2
d ma
2
?
16. a) m = 2kg, ? = 37°, F = 20 N
From the free body diagram 
F = (2g sin ?) + ma ? a = (20 – 20 sin ?)/s = 4m/sec
2
S = ut + ½ at
2
  (u = 0, t = 1s, a = 1.66)
= 2m
So, work, done w = Fs = 20 × 2 = 40 J
b) If W = 40 J
S = 
F
W
= 
20
40
h = 2 sin 37° = 1.2 m
So, work done W = –mgh = – 20 × 1.2 = –24 J
c) v = u + at  = 4 × 10 = 40 m/sec
So, K.E.  = ½ mv
2
= ½ × 2 × 16 = 16 J
17. m = 2kg, ? = 37°, F = 20 N, a = 10 m/sec
2
a) t = 1sec
So, s= ut + ½ at
2
= 5m
37°
?
A ?
A ?
A ?
B ?
v=0
?
v=20 m/s
m=500 kg ?
–a 
?
25m
?
a 
?
R  
mg
?
ma f 
?
500 kg ?
a 
?
25m
?
R  
mg
?
F
F 
?
ma
?
ma ?
2g cos ? ?
20N
?
R 
?
ma 2gsin ? ?
20N ?
ma ?
mg cos ? ?
20N
?
R 
?
mg sin ? ?
?R ?
h
?
37°
?
5m ?
C ?
A ?
B ?
37°
?
Page 4


8.1
SOLUTIONS TO CONCEPTS 
CHAPTER – 8
1. M = m
c
+ m
b
= 90kg
u =  6 km/h = 1.666 m/sec
v = 12 km/h = 3.333 m/sec
Increase in K.E. = ½ Mv
2
– ½ Mu
2
= ½ 90 × (3.333)
2
– ½ × 90 × (1.66)
2
= 494.5 – 124.6 = 374.8 ? 375 J
2. m
b
= 2 kg.
u = 10 m/sec
a = 3 m/aec
2
t = 5 sec
v = u + at = 10 + 3 I 5 = 25 m/sec.
?F.K.E = ½ mv
2
= ½ × 2 × 625 = 625 J.
3. F = 100 N
S = 4m, ? = 0°
? = S . F
? ?
???100 × 4 = 400 J ?
4. m = 5 kg
? = 30°
S = 10 m
F = mg
So, work done by the force of gravity
? = mgh = 5 × 9.8 × 5 = 245 J ?
5. F= 2.50N, S = 2.5m,  m =15g = 0.015kg.
So, w = F × S ? a = 
m
F
= 
015 . 0
5 . 2
= 
3
500
m/s
2
=F × S cos 0° (acting along the same line)
= 2.5 × 2.5 = 6.25J
Let the velocity of the body at b = U. Applying work-energy principle ½ mv
2
– 0 = 6.25
? V = 
015 . 0
2 25 . 6 ?
= 28.86 m/sec.
So, time taken to travel from A to B.
? t = 
a
u v ?
= 
500
3 86 . 28 ?
? Average power = 
t
W
= 
3 ) 86 . 28 (
500 25 . 6
?
?
= 36.1
6. Given 
j
ˆ
3 i
ˆ
2 r
1
? ?
?
j
ˆ
2 i
ˆ
3 r
2
? ?
So, displacement vector is given by,
2 1
r r r
? ? ?
? ? ? j
ˆ
i
ˆ
) j
ˆ
3 i
ˆ
2 ( ) j
ˆ
2 i
ˆ
3 ( r ? ? ? ? ? ?
?
u=1.66 m/s ?
90kg ? 90kg ?
v=3.33 m/s ?
u=10 m/s ?
2 kg ? a
?
= 3m/s
2
F ?
4m ?
R ?
100 N ?
mg ?
30°
?
5 ?
mg ?
F ?
5 log ?
10m ?
30°
?
v ? ?
A ? B ?
Chapter 8
8.2
So, work done = s F
?
?
? = 5 × 1 + 5(-1) = 0
7. m
b
= 2kg, s = 40m, a = 0.5m/sec
2
So, force applied by the man on the box
F = m
b
a = 2 × (0.5) = 1 N
? = FS = 1 × 40 = 40 J ?
8. Given that F= a + bx
Where a and b are constants.
So, work done by this force during this force during the displacement x = 0 and  x = d is given 
by 
W = 
? ?
? ?
d
0
d
0
dx ) bx a ( dx F = ax + (bx
2
/2) = [a + ½ bd] d
9. m
b
= 250g = .250 kg
? = 37°, S = 1m.
Frictional force f = ?R
mg sin ? = ? R ..(1)
mg cos ?? ..(2)
so, work done against ?R = ?RS cos 0° = mg sin ? S = 0.250 × 9.8 × 0.60 × 1 = 1.5 J
10. a = 
) m M ( 2
F
?
(given)
a) from fig (1)
ma = ?
k
R
1
and R
1
= mg
? ? =
1
R
ma
= 
g ) m M ( 2
F
?
b) Frictional force acting on the smaller block f = ?R = 
) m M ( 2
F m
mg
g ) m M ( 2
F
?
?
? ?
?
c) Work done w = fs s = d
w = d
) m M ( 2
mF
?
?
= 
) m M ( 2
mFd
?
?
11. Weight = 2000 N, S = 20m, ? = 0.2
a) R + Psin ? - 2000 = 0 ..(1)
P cos ? - 0.2 R =0 ..(2)
From (1) and (2) P cos ? – 0.2 (2000 – P sin ?)=0
P = 
? ? ? sin 2 . 0 cos
400
..(3)
So, work done by the person, W = PS cos ? = 
? ? ?
?
sin 2 . 0 cos
cos 8000
= 
? ? sin 2 . 0 1
8000
= 
? ? tan 5
40000
b) For minimum magnitude of force from equn(1)
d/d ? (cos ??+ 0.2 sin ?) = 0 ? tan ? = 0.2
putting the value in equn (3)
W = 
? ? tan 5
40000
= 
) 2 . 5 (
40000
= 7690 J
12. w = 100 N,  ? = 37°,  s = 2m
R ?
m b g ?
m b a ? F ?
R ?
?R ?
1 m ?
mg ?
37° ?
M
?
F ?
m
?
R 1 ?
? k R 1 ?
ma ?
mg ?
?R 1 ?
R 2 ?
f
?
ma ?
mg ?
?R 2 ?
? ?
R
?
P
?
0.2R ?
2000 N ?
Chapter 8
8.3
Force F= mg sin 37° = 100 × 0.60 = 60 N
So, work done, when the force is parallel to incline.
w = Fs cos ? = 60 × 2 × cos ? = 120 J
In ?ABC AB= 2m
CB = 37°
so, h = C = 1m
?work done when the force in horizontal direction 
W = mgh = 100 × 1.2 = 120 J ?
13. m = 500 kg, s = 25m, u = 72km/h= 20 m/s, v = 0
(-a) = 
S 2
u v
2 2
?
? a = 
50
400
= 8m/sec
2
Frictional force f = ma = 500 × 8 = 4000 N
14. m = 500 kg, u = 0, v = 72 km/h = 20m/s
a = 
s 2
u v
2 2
?
=
50
400
= 8m/sec
2
force needed to accelerate the car F = ma = 500 × 8 = 4000 N
15. Given, v = a x (uniformly accelerated motion)
displacement s = d – 0 = d
putting x = 0, v
1
= 0
putting x = d, v
2
= a d
a = 
s 2
u v
2
2
2
2
?
= 
d 2
d a
2
= 
2
a
2
force f = ma = 
2
ma
2
work done w = FS cos ? = d
2
ma
2
? = 
2
d ma
2
?
16. a) m = 2kg, ? = 37°, F = 20 N
From the free body diagram 
F = (2g sin ?) + ma ? a = (20 – 20 sin ?)/s = 4m/sec
2
S = ut + ½ at
2
  (u = 0, t = 1s, a = 1.66)
= 2m
So, work, done w = Fs = 20 × 2 = 40 J
b) If W = 40 J
S = 
F
W
= 
20
40
h = 2 sin 37° = 1.2 m
So, work done W = –mgh = – 20 × 1.2 = –24 J
c) v = u + at  = 4 × 10 = 40 m/sec
So, K.E.  = ½ mv
2
= ½ × 2 × 16 = 16 J
17. m = 2kg, ? = 37°, F = 20 N, a = 10 m/sec
2
a) t = 1sec
So, s= ut + ½ at
2
= 5m
37°
?
A ?
A ?
A ?
B ?
v=0
?
v=20 m/s
m=500 kg ?
–a 
?
25m
?
a 
?
R  
mg
?
ma f 
?
500 kg ?
a 
?
25m
?
R  
mg
?
F
F 
?
ma
?
ma ?
2g cos ? ?
20N
?
R 
?
ma 2gsin ? ?
20N ?
ma ?
mg cos ? ?
20N
?
R 
?
mg sin ? ?
?R ?
h
?
37°
?
5m ?
C ?
A ?
B ?
37°
?
Chapter 8
8.4
Work done by the applied force w = FS cos 0° = 20 × 5 = 100 J
b) BC (h) = 5 sin 37° = 3m
So, work done by the weight W = mgh = 2 × 10 × 3 = 60 J
c) So, frictional force f = mg sin ?
work done by the frictional forces w = fs cos0° = (mg sin ?) s = 20 × 0.60 × 5  = 60 J ?
18. Given, m = 25o g = 0.250kg, 
u = 40 cm/sec = 0.4m/sec
? = 0.1, v=0
Here, ? R = ma {where, a = deceleration}
a = 
m
R ?
= 
m
mg ?
= ?g = 0.1 × 9.8 = 0.98 m/sec
2
S = 
a 2
u v
2 2
?
= 0.082m = 8.2 cm
Again, work done against friction is given by 
– w = ? RS cos ?
= 0.1 × 2.5 × 0.082 × 1 ( ? = 0°) = 0.02 J
? W = – 0.02 J
?
19. h = 50m, m = 1.8 × 10
5
kg/hr, P = 100 watt,
P.E. = mgh = 1.8 × 10
5
× 9.8 × 50 = 882 × 10
5
J/hr
Because, half the potential energy is converted into electricity, 
Electrical energy ½ P.E. = 441 × 10
5
J/hr
So, power in watt (J/sec) is given by = 
3600
10 441
5
?
? number of 100 W lamps, that can be lit 
100 3600
10 441
5
?
?
= 122.5 ?122 
20. m = 6kg, h = 2m
P.E. at a height ‘2m’ = mgh = 6 × (9.8) × 2 = 117.6 J
P.E. at floor = 0
Loss in P.E. = 117.6 – 0 = 117. 6 J ? 118 J
21. h = 40m, u = 50 m/sec
Let the speed be ‘v’ when it strikes the ground.
Applying law of conservation of energy 
mgh + ½ mu
2
= ½ mv
2
? 10 × 40 + (1/2) × 2500 = ½ v
2 
? v
2
= 3300 ? v = 57.4 m/sec ?58 m/sec
22. t = 1 min 57.56 sec = 11.56 sec, p= 400 W, s =200 m
p = 
t
w
, Work w = pt = 460 × 117.56 J
Again, W = FS = 
200
56 . 117 460 ?
= 270.3 N ? 270 N
23. S = 100 m, t = 10.54 sec, m = 50 kg
The motion can be assumed to be uniform because the time taken for acceleration is 
minimum.
Page 5


8.1
SOLUTIONS TO CONCEPTS 
CHAPTER – 8
1. M = m
c
+ m
b
= 90kg
u =  6 km/h = 1.666 m/sec
v = 12 km/h = 3.333 m/sec
Increase in K.E. = ½ Mv
2
– ½ Mu
2
= ½ 90 × (3.333)
2
– ½ × 90 × (1.66)
2
= 494.5 – 124.6 = 374.8 ? 375 J
2. m
b
= 2 kg.
u = 10 m/sec
a = 3 m/aec
2
t = 5 sec
v = u + at = 10 + 3 I 5 = 25 m/sec.
?F.K.E = ½ mv
2
= ½ × 2 × 625 = 625 J.
3. F = 100 N
S = 4m, ? = 0°
? = S . F
? ?
???100 × 4 = 400 J ?
4. m = 5 kg
? = 30°
S = 10 m
F = mg
So, work done by the force of gravity
? = mgh = 5 × 9.8 × 5 = 245 J ?
5. F= 2.50N, S = 2.5m,  m =15g = 0.015kg.
So, w = F × S ? a = 
m
F
= 
015 . 0
5 . 2
= 
3
500
m/s
2
=F × S cos 0° (acting along the same line)
= 2.5 × 2.5 = 6.25J
Let the velocity of the body at b = U. Applying work-energy principle ½ mv
2
– 0 = 6.25
? V = 
015 . 0
2 25 . 6 ?
= 28.86 m/sec.
So, time taken to travel from A to B.
? t = 
a
u v ?
= 
500
3 86 . 28 ?
? Average power = 
t
W
= 
3 ) 86 . 28 (
500 25 . 6
?
?
= 36.1
6. Given 
j
ˆ
3 i
ˆ
2 r
1
? ?
?
j
ˆ
2 i
ˆ
3 r
2
? ?
So, displacement vector is given by,
2 1
r r r
? ? ?
? ? ? j
ˆ
i
ˆ
) j
ˆ
3 i
ˆ
2 ( ) j
ˆ
2 i
ˆ
3 ( r ? ? ? ? ? ?
?
u=1.66 m/s ?
90kg ? 90kg ?
v=3.33 m/s ?
u=10 m/s ?
2 kg ? a
?
= 3m/s
2
F ?
4m ?
R ?
100 N ?
mg ?
30°
?
5 ?
mg ?
F ?
5 log ?
10m ?
30°
?
v ? ?
A ? B ?
Chapter 8
8.2
So, work done = s F
?
?
? = 5 × 1 + 5(-1) = 0
7. m
b
= 2kg, s = 40m, a = 0.5m/sec
2
So, force applied by the man on the box
F = m
b
a = 2 × (0.5) = 1 N
? = FS = 1 × 40 = 40 J ?
8. Given that F= a + bx
Where a and b are constants.
So, work done by this force during this force during the displacement x = 0 and  x = d is given 
by 
W = 
? ?
? ?
d
0
d
0
dx ) bx a ( dx F = ax + (bx
2
/2) = [a + ½ bd] d
9. m
b
= 250g = .250 kg
? = 37°, S = 1m.
Frictional force f = ?R
mg sin ? = ? R ..(1)
mg cos ?? ..(2)
so, work done against ?R = ?RS cos 0° = mg sin ? S = 0.250 × 9.8 × 0.60 × 1 = 1.5 J
10. a = 
) m M ( 2
F
?
(given)
a) from fig (1)
ma = ?
k
R
1
and R
1
= mg
? ? =
1
R
ma
= 
g ) m M ( 2
F
?
b) Frictional force acting on the smaller block f = ?R = 
) m M ( 2
F m
mg
g ) m M ( 2
F
?
?
? ?
?
c) Work done w = fs s = d
w = d
) m M ( 2
mF
?
?
= 
) m M ( 2
mFd
?
?
11. Weight = 2000 N, S = 20m, ? = 0.2
a) R + Psin ? - 2000 = 0 ..(1)
P cos ? - 0.2 R =0 ..(2)
From (1) and (2) P cos ? – 0.2 (2000 – P sin ?)=0
P = 
? ? ? sin 2 . 0 cos
400
..(3)
So, work done by the person, W = PS cos ? = 
? ? ?
?
sin 2 . 0 cos
cos 8000
= 
? ? sin 2 . 0 1
8000
= 
? ? tan 5
40000
b) For minimum magnitude of force from equn(1)
d/d ? (cos ??+ 0.2 sin ?) = 0 ? tan ? = 0.2
putting the value in equn (3)
W = 
? ? tan 5
40000
= 
) 2 . 5 (
40000
= 7690 J
12. w = 100 N,  ? = 37°,  s = 2m
R ?
m b g ?
m b a ? F ?
R ?
?R ?
1 m ?
mg ?
37° ?
M
?
F ?
m
?
R 1 ?
? k R 1 ?
ma ?
mg ?
?R 1 ?
R 2 ?
f
?
ma ?
mg ?
?R 2 ?
? ?
R
?
P
?
0.2R ?
2000 N ?
Chapter 8
8.3
Force F= mg sin 37° = 100 × 0.60 = 60 N
So, work done, when the force is parallel to incline.
w = Fs cos ? = 60 × 2 × cos ? = 120 J
In ?ABC AB= 2m
CB = 37°
so, h = C = 1m
?work done when the force in horizontal direction 
W = mgh = 100 × 1.2 = 120 J ?
13. m = 500 kg, s = 25m, u = 72km/h= 20 m/s, v = 0
(-a) = 
S 2
u v
2 2
?
? a = 
50
400
= 8m/sec
2
Frictional force f = ma = 500 × 8 = 4000 N
14. m = 500 kg, u = 0, v = 72 km/h = 20m/s
a = 
s 2
u v
2 2
?
=
50
400
= 8m/sec
2
force needed to accelerate the car F = ma = 500 × 8 = 4000 N
15. Given, v = a x (uniformly accelerated motion)
displacement s = d – 0 = d
putting x = 0, v
1
= 0
putting x = d, v
2
= a d
a = 
s 2
u v
2
2
2
2
?
= 
d 2
d a
2
= 
2
a
2
force f = ma = 
2
ma
2
work done w = FS cos ? = d
2
ma
2
? = 
2
d ma
2
?
16. a) m = 2kg, ? = 37°, F = 20 N
From the free body diagram 
F = (2g sin ?) + ma ? a = (20 – 20 sin ?)/s = 4m/sec
2
S = ut + ½ at
2
  (u = 0, t = 1s, a = 1.66)
= 2m
So, work, done w = Fs = 20 × 2 = 40 J
b) If W = 40 J
S = 
F
W
= 
20
40
h = 2 sin 37° = 1.2 m
So, work done W = –mgh = – 20 × 1.2 = –24 J
c) v = u + at  = 4 × 10 = 40 m/sec
So, K.E.  = ½ mv
2
= ½ × 2 × 16 = 16 J
17. m = 2kg, ? = 37°, F = 20 N, a = 10 m/sec
2
a) t = 1sec
So, s= ut + ½ at
2
= 5m
37°
?
A ?
A ?
A ?
B ?
v=0
?
v=20 m/s
m=500 kg ?
–a 
?
25m
?
a 
?
R  
mg
?
ma f 
?
500 kg ?
a 
?
25m
?
R  
mg
?
F
F 
?
ma
?
ma ?
2g cos ? ?
20N
?
R 
?
ma 2gsin ? ?
20N ?
ma ?
mg cos ? ?
20N
?
R 
?
mg sin ? ?
?R ?
h
?
37°
?
5m ?
C ?
A ?
B ?
37°
?
Chapter 8
8.4
Work done by the applied force w = FS cos 0° = 20 × 5 = 100 J
b) BC (h) = 5 sin 37° = 3m
So, work done by the weight W = mgh = 2 × 10 × 3 = 60 J
c) So, frictional force f = mg sin ?
work done by the frictional forces w = fs cos0° = (mg sin ?) s = 20 × 0.60 × 5  = 60 J ?
18. Given, m = 25o g = 0.250kg, 
u = 40 cm/sec = 0.4m/sec
? = 0.1, v=0
Here, ? R = ma {where, a = deceleration}
a = 
m
R ?
= 
m
mg ?
= ?g = 0.1 × 9.8 = 0.98 m/sec
2
S = 
a 2
u v
2 2
?
= 0.082m = 8.2 cm
Again, work done against friction is given by 
– w = ? RS cos ?
= 0.1 × 2.5 × 0.082 × 1 ( ? = 0°) = 0.02 J
? W = – 0.02 J
?
19. h = 50m, m = 1.8 × 10
5
kg/hr, P = 100 watt,
P.E. = mgh = 1.8 × 10
5
× 9.8 × 50 = 882 × 10
5
J/hr
Because, half the potential energy is converted into electricity, 
Electrical energy ½ P.E. = 441 × 10
5
J/hr
So, power in watt (J/sec) is given by = 
3600
10 441
5
?
? number of 100 W lamps, that can be lit 
100 3600
10 441
5
?
?
= 122.5 ?122 
20. m = 6kg, h = 2m
P.E. at a height ‘2m’ = mgh = 6 × (9.8) × 2 = 117.6 J
P.E. at floor = 0
Loss in P.E. = 117.6 – 0 = 117. 6 J ? 118 J
21. h = 40m, u = 50 m/sec
Let the speed be ‘v’ when it strikes the ground.
Applying law of conservation of energy 
mgh + ½ mu
2
= ½ mv
2
? 10 × 40 + (1/2) × 2500 = ½ v
2 
? v
2
= 3300 ? v = 57.4 m/sec ?58 m/sec
22. t = 1 min 57.56 sec = 11.56 sec, p= 400 W, s =200 m
p = 
t
w
, Work w = pt = 460 × 117.56 J
Again, W = FS = 
200
56 . 117 460 ?
= 270.3 N ? 270 N
23. S = 100 m, t = 10.54 sec, m = 50 kg
The motion can be assumed to be uniform because the time taken for acceleration is 
minimum.
Chapter 8
8.5
a) Speed v = S/t = 9.487 e/s
So, K.E. = ½ mv
2
= 2250 J
b) Weight = mg = 490 J
given R = mg /10 = 49 J
so, work done against resistance W
F
= – RS = – 49 × 100 = – 4900 J
c) To maintain her uniform speed, she has to exert 4900 j of energy to over come friction
P = 
t
W
= 4900 / 10.54 = 465 W 
24. h = 10 m
flow rate = (m/t) = 30 kg/min = 0.5 kg/sec
power P = 
t
mgh
= (0.5) × 9.8  × 10 = 49 W
So, horse power (h.p) P/746 = 49/746 = 6.6 × 10
–2
hp
25. m = 200g = 0.2kg, h = 150cm = 1.5m, v = 3m/sec, t = 1 sec
Total work done = ½ mv
2 
+ mgh = (1/2) × (0.2) ×9 + (0.2) × (9.8) × (1.5) = 3.84 J
h.p. used = 
746
84 . 3
= 5.14 × 10
–3
26. m = 200 kg, s = 12m, t = 1 min = 60 sec
So, work  W = F cos ? = mgs cos0° [ ? = 0°, for minimum work]
= 2000 × 10 × 12 = 240000 J
So, power p = 
t
W
= 
60
240000
= 4000 watt
h.p = 
746
4000
= 5.3 hp. ?
27. The specification given by the company are
U = 0, m = 95 kg, P
m
= 3.5 hp
V
m
= 60 km/h = 50/3 m/sec t
m 
= 5 sec
So, the maximum acceleration that can be produced is given by,
a =  
5
0 ) 3 / 50 ( ?
= 
3
10
So, the driving force is given by 
F = ma = 95 × 
3
10
= 
3
950
N
So, the velocity that can be attained by maximum h.p. white supplying 
3
950
will be 
v = 
F
p
? v = 
950
5 746 5 . 3 ? ?
= 8.2 m/sec.
Because, the scooter can reach a maximum of 8.s m/sec while producing a force of 950/3 N, 
the specifications given are some what over claimed.
28. Given m = 30kg, v = 40 cm/sec = 0.4 m/sec s = 2m
From the free body diagram, the force given by the chain is, 
F = (ma – mg) = m(a – g) [where a = acceleration of the block]
a = 
2s
u2)  (v2
= 
4 . 0
16 . 0
= 0.04 m/sec
2
mg
?
F 
?
ma
?
mg
?
F 
?
Read More
102 videos|411 docs|121 tests

Top Courses for NEET

FAQs on HC Verma Solutions: Chapter 8 - Work & Energy - Physics Class 11 - NEET

1. What is work in physics?
Ans. In physics, work is defined as the transfer of energy that occurs when a force is applied to an object and the object is displaced in the direction of the force. It is calculated as the product of the force applied and the displacement of the object in the direction of the force.
2. How is work related to energy?
Ans. Work and energy are closely related concepts in physics. Work is the transfer of energy, and the work done on an object is equal to the change in its energy. When work is done on an object, its energy increases, and when work is done by an object, its energy decreases.
3. What is the unit of work in physics?
Ans. The unit of work in physics is the joule (J). One joule is equal to the work done when a force of one newton is applied to an object and it is displaced by one meter in the direction of the force. In some cases, the unit of kilojoule (kJ) is also used.
4. Can work be negative?
Ans. Yes, work can be negative. When a force is applied to an object in a direction opposite to its displacement, the work done by that force is negative. This means that energy is being transferred out of the object instead of being added to it.
5. How is work calculated in different situations?
Ans. The calculation of work depends on the situation. In the case of a constant force and a linear displacement, work is calculated as the product of the force, displacement, and the cosine of the angle between the force and the displacement. In other cases, such as when the force is not constant or when the displacement is not linear, different methods may be used to calculate work.
102 videos|411 docs|121 tests
Download as PDF
Explore Courses for NEET exam

Top Courses for NEET

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

MCQs

,

Objective type Questions

,

Summary

,

video lectures

,

Free

,

Previous Year Questions with Solutions

,

Sample Paper

,

shortcuts and tricks

,

mock tests for examination

,

HC Verma Solutions: Chapter 8 - Work & Energy | Physics Class 11 - NEET

,

practice quizzes

,

pdf

,

Semester Notes

,

Important questions

,

HC Verma Solutions: Chapter 8 - Work & Energy | Physics Class 11 - NEET

,

Exam

,

HC Verma Solutions: Chapter 8 - Work & Energy | Physics Class 11 - NEET

,

past year papers

,

study material

,

Viva Questions

,

Extra Questions

,

ppt

;