Page 1
2
QUESTION PAPER CODE 65/1/1
EXPECTED ANSWERS/V ALUE POINTS
SECTION - A
1-10. 1. x = 25 2.
5
1
x =
3. 10 4. x = 2 5. x = + 6
6. 2x
3/2
+ 2 x + c 7.
12
p
8. 5 9.
3
2p
10.
( ) { } ( ) 0 k
ˆ
j
ˆ
i
ˆ
k
ˆ
c j
ˆ
b i
ˆ
a – r = + + · + +
or
( ) c b a k
ˆ
j
ˆ
i
ˆ
r + + = + + ·
1×10 =10 m
SECTION - B
11. A A b) (a, × ? ?
a + b = b + a ? (a, b) R (a, b) ? R is reflexive 1 m
For (a, b), (c, d) A A × ?
If (a, b) R (c, d) i.e. a + d = b + c ? c + b = d + a
then (c, d) R (a, b) ? R is symmetric 1 m
For (a, b), (c, d), (e, f) A A × ?
If (a, b) R (c, d) & (c, d) R (e, f) i.e. a + d = b + c & c + f = d + e
Adding, a + d + c + f = b + c + d + e ? a + f = b + e
then (a, b) R (e, f) ? R is transitive 1 m
? R is reflexive, symmetric and transitive
hence R is an equivalance relation ½ m
[(2, 5)] = {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)} ½ m
Q. No. Marks
PDF created with pdfFactory trial version www.pdffactory.com
Page 2
2
QUESTION PAPER CODE 65/1/1
EXPECTED ANSWERS/V ALUE POINTS
SECTION - A
1-10. 1. x = 25 2.
5
1
x =
3. 10 4. x = 2 5. x = + 6
6. 2x
3/2
+ 2 x + c 7.
12
p
8. 5 9.
3
2p
10.
( ) { } ( ) 0 k
ˆ
j
ˆ
i
ˆ
k
ˆ
c j
ˆ
b i
ˆ
a – r = + + · + +
or
( ) c b a k
ˆ
j
ˆ
i
ˆ
r + + = + + ·
1×10 =10 m
SECTION - B
11. A A b) (a, × ? ?
a + b = b + a ? (a, b) R (a, b) ? R is reflexive 1 m
For (a, b), (c, d) A A × ?
If (a, b) R (c, d) i.e. a + d = b + c ? c + b = d + a
then (c, d) R (a, b) ? R is symmetric 1 m
For (a, b), (c, d), (e, f) A A × ?
If (a, b) R (c, d) & (c, d) R (e, f) i.e. a + d = b + c & c + f = d + e
Adding, a + d + c + f = b + c + d + e ? a + f = b + e
then (a, b) R (e, f) ? R is transitive 1 m
? R is reflexive, symmetric and transitive
hence R is an equivalance relation ½ m
[(2, 5)] = {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)} ½ m
Q. No. Marks
PDF created with pdfFactory trial version www.pdffactory.com
3
12. cot
–1
?
?
?
?
?
?
?
?
?
?
+
+ +
x sin – 1 – x sin 1
x sin – 1 x sin 1
= cot
–1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
- -
?
?
?
?
?
?
+
?
?
?
?
?
?
- +
?
?
?
?
?
?
+
2 2
2 2
2
x
sin
2
x
cos
2
x
sin
2
x
cos
2
x
sin
2
x
cos
2
x
sin
2
x
cos
2½ m
2
x
2
x
cot cot
2
x
sin 2
2
x
cos 2
cot
1 1
= ?
?
?
?
?
?
=
?
?
?
?
?
?
?
?
?
?
=
- -
1½ m
OR
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
+ =
- - -
7
2 5
sec
8
1
tan
5
1
tan 2 LHS
1 1 1
7
1
tan
40
1
– 1
8
1
5
1
tan 2
1 1 - -
+
?
?
?
?
?
?
?
?
?
?
?
?
+
=
1½+½ m
7
1
tan
3
1
– 1
3
1
2
tan
7
1
tan
3
1
tan 2
1
2
1 1 1 - - - -
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
·
= + =
1 m
RHS
4
p
) 1 ( tan
25
25
tan
7
1
tan
4
3
tan
1 1 1 1
= = = = + =
- - - -
1 m
13. LHS =
2x 2x z – y – x
y – x – z 2z 2z
2y – x z – y 2y
PDF created with pdfFactory trial version www.pdffactory.com
Page 3
2
QUESTION PAPER CODE 65/1/1
EXPECTED ANSWERS/V ALUE POINTS
SECTION - A
1-10. 1. x = 25 2.
5
1
x =
3. 10 4. x = 2 5. x = + 6
6. 2x
3/2
+ 2 x + c 7.
12
p
8. 5 9.
3
2p
10.
( ) { } ( ) 0 k
ˆ
j
ˆ
i
ˆ
k
ˆ
c j
ˆ
b i
ˆ
a – r = + + · + +
or
( ) c b a k
ˆ
j
ˆ
i
ˆ
r + + = + + ·
1×10 =10 m
SECTION - B
11. A A b) (a, × ? ?
a + b = b + a ? (a, b) R (a, b) ? R is reflexive 1 m
For (a, b), (c, d) A A × ?
If (a, b) R (c, d) i.e. a + d = b + c ? c + b = d + a
then (c, d) R (a, b) ? R is symmetric 1 m
For (a, b), (c, d), (e, f) A A × ?
If (a, b) R (c, d) & (c, d) R (e, f) i.e. a + d = b + c & c + f = d + e
Adding, a + d + c + f = b + c + d + e ? a + f = b + e
then (a, b) R (e, f) ? R is transitive 1 m
? R is reflexive, symmetric and transitive
hence R is an equivalance relation ½ m
[(2, 5)] = {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)} ½ m
Q. No. Marks
PDF created with pdfFactory trial version www.pdffactory.com
3
12. cot
–1
?
?
?
?
?
?
?
?
?
?
+
+ +
x sin – 1 – x sin 1
x sin – 1 x sin 1
= cot
–1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
- -
?
?
?
?
?
?
+
?
?
?
?
?
?
- +
?
?
?
?
?
?
+
2 2
2 2
2
x
sin
2
x
cos
2
x
sin
2
x
cos
2
x
sin
2
x
cos
2
x
sin
2
x
cos
2½ m
2
x
2
x
cot cot
2
x
sin 2
2
x
cos 2
cot
1 1
= ?
?
?
?
?
?
=
?
?
?
?
?
?
?
?
?
?
=
- -
1½ m
OR
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
+ =
- - -
7
2 5
sec
8
1
tan
5
1
tan 2 LHS
1 1 1
7
1
tan
40
1
– 1
8
1
5
1
tan 2
1 1 - -
+
?
?
?
?
?
?
?
?
?
?
?
?
+
=
1½+½ m
7
1
tan
3
1
– 1
3
1
2
tan
7
1
tan
3
1
tan 2
1
2
1 1 1 - - - -
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
·
= + =
1 m
RHS
4
p
) 1 ( tan
25
25
tan
7
1
tan
4
3
tan
1 1 1 1
= = = = + =
- - - -
1 m
13. LHS =
2x 2x z – y – x
y – x – z 2z 2z
2y – x z – y 2y
PDF created with pdfFactory trial version www.pdffactory.com
4
= 3 2 1 1
R R R R
2x 2x z – y – x
y – x – z 2z 2z
z y x z y x z y x
+ + ?
+ + + + + +
1 m
=
( ) ;
z y x z y x z – y – x
z y x – 0 2z
0 0 z y x
+ + + +
+ +
+ +
1 3 3
1 2 2
C – C C
C – C C
?
?
2 m
= (x + y + z)
.
{0
.
(x + y + z) + (x + y + z)
2
} = (x + y + z)
3
1 m
14. let ( ) x cos ? ? cos x , x – 1 2x cos v ,
x
x – 1
tan u
1 – 2 1 –
2
1 –
= ? = =
?
?
?
?
?
?
?
?
=
( ) x cos ? ? tan tan
? cos
? cos – 1
tan u
1 – 1 –
2
1 –
= = =
?
?
?
?
?
?
?
?
= ?
1 m
( ) ( )
?
?
?
?
?
?
?
?
?
?
?
?
?
?
= = = ? 2 –
2
p
cos cos ? 2 sin cos ? cos – 1 ? cos 2 cos v and
1 – 1 – 2 1 –
= x cos 2 –
2
p
? 2 –
2
p
1 –
= 1 m
2 2
x – 1
2
dx
dv
,
x – 1
1 –
dx
du
= =
1 m
2
1 –
2
x – 1
x – 1
1 –
dv
du
2
2
= × = ?
1 m
( In case, If x = sin ? then answer is
2
1
)
15. y = x
x
?
log y = x log x, Taking log of both sides ½ m
dx
dy
y
1
?
= log x + 1, Diff. w r t “x” 1½ m
,
x
1
dx
dy
y
1
–
dx
y d
y
1
2
2 2
2
=
?
?
?
?
?
?
? Diff. w r t “x” 1½ m
PDF created with pdfFactory trial version www.pdffactory.com
Page 4
2
QUESTION PAPER CODE 65/1/1
EXPECTED ANSWERS/V ALUE POINTS
SECTION - A
1-10. 1. x = 25 2.
5
1
x =
3. 10 4. x = 2 5. x = + 6
6. 2x
3/2
+ 2 x + c 7.
12
p
8. 5 9.
3
2p
10.
( ) { } ( ) 0 k
ˆ
j
ˆ
i
ˆ
k
ˆ
c j
ˆ
b i
ˆ
a – r = + + · + +
or
( ) c b a k
ˆ
j
ˆ
i
ˆ
r + + = + + ·
1×10 =10 m
SECTION - B
11. A A b) (a, × ? ?
a + b = b + a ? (a, b) R (a, b) ? R is reflexive 1 m
For (a, b), (c, d) A A × ?
If (a, b) R (c, d) i.e. a + d = b + c ? c + b = d + a
then (c, d) R (a, b) ? R is symmetric 1 m
For (a, b), (c, d), (e, f) A A × ?
If (a, b) R (c, d) & (c, d) R (e, f) i.e. a + d = b + c & c + f = d + e
Adding, a + d + c + f = b + c + d + e ? a + f = b + e
then (a, b) R (e, f) ? R is transitive 1 m
? R is reflexive, symmetric and transitive
hence R is an equivalance relation ½ m
[(2, 5)] = {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)} ½ m
Q. No. Marks
PDF created with pdfFactory trial version www.pdffactory.com
3
12. cot
–1
?
?
?
?
?
?
?
?
?
?
+
+ +
x sin – 1 – x sin 1
x sin – 1 x sin 1
= cot
–1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
- -
?
?
?
?
?
?
+
?
?
?
?
?
?
- +
?
?
?
?
?
?
+
2 2
2 2
2
x
sin
2
x
cos
2
x
sin
2
x
cos
2
x
sin
2
x
cos
2
x
sin
2
x
cos
2½ m
2
x
2
x
cot cot
2
x
sin 2
2
x
cos 2
cot
1 1
= ?
?
?
?
?
?
=
?
?
?
?
?
?
?
?
?
?
=
- -
1½ m
OR
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
+ =
- - -
7
2 5
sec
8
1
tan
5
1
tan 2 LHS
1 1 1
7
1
tan
40
1
– 1
8
1
5
1
tan 2
1 1 - -
+
?
?
?
?
?
?
?
?
?
?
?
?
+
=
1½+½ m
7
1
tan
3
1
– 1
3
1
2
tan
7
1
tan
3
1
tan 2
1
2
1 1 1 - - - -
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
·
= + =
1 m
RHS
4
p
) 1 ( tan
25
25
tan
7
1
tan
4
3
tan
1 1 1 1
= = = = + =
- - - -
1 m
13. LHS =
2x 2x z – y – x
y – x – z 2z 2z
2y – x z – y 2y
PDF created with pdfFactory trial version www.pdffactory.com
4
= 3 2 1 1
R R R R
2x 2x z – y – x
y – x – z 2z 2z
z y x z y x z y x
+ + ?
+ + + + + +
1 m
=
( ) ;
z y x z y x z – y – x
z y x – 0 2z
0 0 z y x
+ + + +
+ +
+ +
1 3 3
1 2 2
C – C C
C – C C
?
?
2 m
= (x + y + z)
.
{0
.
(x + y + z) + (x + y + z)
2
} = (x + y + z)
3
1 m
14. let ( ) x cos ? ? cos x , x – 1 2x cos v ,
x
x – 1
tan u
1 – 2 1 –
2
1 –
= ? = =
?
?
?
?
?
?
?
?
=
( ) x cos ? ? tan tan
? cos
? cos – 1
tan u
1 – 1 –
2
1 –
= = =
?
?
?
?
?
?
?
?
= ?
1 m
( ) ( )
?
?
?
?
?
?
?
?
?
?
?
?
?
?
= = = ? 2 –
2
p
cos cos ? 2 sin cos ? cos – 1 ? cos 2 cos v and
1 – 1 – 2 1 –
= x cos 2 –
2
p
? 2 –
2
p
1 –
= 1 m
2 2
x – 1
2
dx
dv
,
x – 1
1 –
dx
du
= =
1 m
2
1 –
2
x – 1
x – 1
1 –
dv
du
2
2
= × = ?
1 m
( In case, If x = sin ? then answer is
2
1
)
15. y = x
x
?
log y = x log x, Taking log of both sides ½ m
dx
dy
y
1
?
= log x + 1, Diff. w r t “x” 1½ m
,
x
1
dx
dy
y
1
–
dx
y d
y
1
2
2 2
2
=
?
?
?
?
?
?
? Diff. w r t “x” 1½ m
PDF created with pdfFactory trial version www.pdffactory.com
5
0
x
y
–
dx
dy
y
1
–
dx
y d
2
2
2
=
?
?
?
?
?
?
?
½ m
16. (x) f ' = 12 x
3
– 12 x
2
– 24 x = 12 x (x + 1) (x – 2) 1+½ m
(x) f ' > 0, ) , 2 ( ) 0 , 1 (– 8 ? ? U x
- - - - - ? ?
+ + – –
1 m
(x) f ' < 0, ) 2 , 0 ( ) 1 – , (– U 8 ? ? x 1 m
f(x) ? is strictly increasing in ) , 2 ( ) 0 , 1 (– 8 U
½ m
and strictly decreasing in ) 2 , 0 ( ) 1 – , (– U 8
OR
Point at ?
?
?
?
?
?
=
2 2
a
,
2 2
a
is
4
p
? ½ m
? cos ? sin 3a
d?
dx
?; sin ? cos 3a –
d?
dy
2 2
= =
1 m
?
slope of tangent at
4
p
?
2
2
4
p
?
? cos ? sin 3a
? sin ? cos 3a –
dx
dy
is
4
p
?
=
=
?
?
?
=
?
?
?
=
=
1 –
4
p
cot – =
1 m
Equation of tangent at the point :
0
2
a
– y x
2 2
a
– x 1 –
2 2
a
– y = + ? ?
?
?
?
?
?
=
1 m
Equation of normal at the point :
0 y – x
2 2
a
– x 1
2 2
a
– y = ? ?
?
?
?
?
?
=
½ m
17.
( ) ] [
? ?
·
+ +
=
·
+
dx
x cos x sin
x cos x 3sin – x) cos x sin ( x cos x sin
dx
x cos x sin
x cos x sin
2 2
2 2 2 2 2 2 2
2 2
6 6
1½ m
? ?
?
?
?
?
?
·
= dx 3 –
x cos x sin
1
2 2
– 1 0 2
PDF created with pdfFactory trial version www.pdffactory.com
Page 5
2
QUESTION PAPER CODE 65/1/1
EXPECTED ANSWERS/V ALUE POINTS
SECTION - A
1-10. 1. x = 25 2.
5
1
x =
3. 10 4. x = 2 5. x = + 6
6. 2x
3/2
+ 2 x + c 7.
12
p
8. 5 9.
3
2p
10.
( ) { } ( ) 0 k
ˆ
j
ˆ
i
ˆ
k
ˆ
c j
ˆ
b i
ˆ
a – r = + + · + +
or
( ) c b a k
ˆ
j
ˆ
i
ˆ
r + + = + + ·
1×10 =10 m
SECTION - B
11. A A b) (a, × ? ?
a + b = b + a ? (a, b) R (a, b) ? R is reflexive 1 m
For (a, b), (c, d) A A × ?
If (a, b) R (c, d) i.e. a + d = b + c ? c + b = d + a
then (c, d) R (a, b) ? R is symmetric 1 m
For (a, b), (c, d), (e, f) A A × ?
If (a, b) R (c, d) & (c, d) R (e, f) i.e. a + d = b + c & c + f = d + e
Adding, a + d + c + f = b + c + d + e ? a + f = b + e
then (a, b) R (e, f) ? R is transitive 1 m
? R is reflexive, symmetric and transitive
hence R is an equivalance relation ½ m
[(2, 5)] = {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)} ½ m
Q. No. Marks
PDF created with pdfFactory trial version www.pdffactory.com
3
12. cot
–1
?
?
?
?
?
?
?
?
?
?
+
+ +
x sin – 1 – x sin 1
x sin – 1 x sin 1
= cot
–1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
- -
?
?
?
?
?
?
+
?
?
?
?
?
?
- +
?
?
?
?
?
?
+
2 2
2 2
2
x
sin
2
x
cos
2
x
sin
2
x
cos
2
x
sin
2
x
cos
2
x
sin
2
x
cos
2½ m
2
x
2
x
cot cot
2
x
sin 2
2
x
cos 2
cot
1 1
= ?
?
?
?
?
?
=
?
?
?
?
?
?
?
?
?
?
=
- -
1½ m
OR
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
+ =
- - -
7
2 5
sec
8
1
tan
5
1
tan 2 LHS
1 1 1
7
1
tan
40
1
– 1
8
1
5
1
tan 2
1 1 - -
+
?
?
?
?
?
?
?
?
?
?
?
?
+
=
1½+½ m
7
1
tan
3
1
– 1
3
1
2
tan
7
1
tan
3
1
tan 2
1
2
1 1 1 - - - -
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
·
= + =
1 m
RHS
4
p
) 1 ( tan
25
25
tan
7
1
tan
4
3
tan
1 1 1 1
= = = = + =
- - - -
1 m
13. LHS =
2x 2x z – y – x
y – x – z 2z 2z
2y – x z – y 2y
PDF created with pdfFactory trial version www.pdffactory.com
4
= 3 2 1 1
R R R R
2x 2x z – y – x
y – x – z 2z 2z
z y x z y x z y x
+ + ?
+ + + + + +
1 m
=
( ) ;
z y x z y x z – y – x
z y x – 0 2z
0 0 z y x
+ + + +
+ +
+ +
1 3 3
1 2 2
C – C C
C – C C
?
?
2 m
= (x + y + z)
.
{0
.
(x + y + z) + (x + y + z)
2
} = (x + y + z)
3
1 m
14. let ( ) x cos ? ? cos x , x – 1 2x cos v ,
x
x – 1
tan u
1 – 2 1 –
2
1 –
= ? = =
?
?
?
?
?
?
?
?
=
( ) x cos ? ? tan tan
? cos
? cos – 1
tan u
1 – 1 –
2
1 –
= = =
?
?
?
?
?
?
?
?
= ?
1 m
( ) ( )
?
?
?
?
?
?
?
?
?
?
?
?
?
?
= = = ? 2 –
2
p
cos cos ? 2 sin cos ? cos – 1 ? cos 2 cos v and
1 – 1 – 2 1 –
= x cos 2 –
2
p
? 2 –
2
p
1 –
= 1 m
2 2
x – 1
2
dx
dv
,
x – 1
1 –
dx
du
= =
1 m
2
1 –
2
x – 1
x – 1
1 –
dv
du
2
2
= × = ?
1 m
( In case, If x = sin ? then answer is
2
1
)
15. y = x
x
?
log y = x log x, Taking log of both sides ½ m
dx
dy
y
1
?
= log x + 1, Diff. w r t “x” 1½ m
,
x
1
dx
dy
y
1
–
dx
y d
y
1
2
2 2
2
=
?
?
?
?
?
?
? Diff. w r t “x” 1½ m
PDF created with pdfFactory trial version www.pdffactory.com
5
0
x
y
–
dx
dy
y
1
–
dx
y d
2
2
2
=
?
?
?
?
?
?
?
½ m
16. (x) f ' = 12 x
3
– 12 x
2
– 24 x = 12 x (x + 1) (x – 2) 1+½ m
(x) f ' > 0, ) , 2 ( ) 0 , 1 (– 8 ? ? U x
- - - - - ? ?
+ + – –
1 m
(x) f ' < 0, ) 2 , 0 ( ) 1 – , (– U 8 ? ? x 1 m
f(x) ? is strictly increasing in ) , 2 ( ) 0 , 1 (– 8 U
½ m
and strictly decreasing in ) 2 , 0 ( ) 1 – , (– U 8
OR
Point at ?
?
?
?
?
?
=
2 2
a
,
2 2
a
is
4
p
? ½ m
? cos ? sin 3a
d?
dx
?; sin ? cos 3a –
d?
dy
2 2
= =
1 m
?
slope of tangent at
4
p
?
2
2
4
p
?
? cos ? sin 3a
? sin ? cos 3a –
dx
dy
is
4
p
?
=
=
?
?
?
=
?
?
?
=
=
1 –
4
p
cot – =
1 m
Equation of tangent at the point :
0
2
a
– y x
2 2
a
– x 1 –
2 2
a
– y = + ? ?
?
?
?
?
?
=
1 m
Equation of normal at the point :
0 y – x
2 2
a
– x 1
2 2
a
– y = ? ?
?
?
?
?
?
=
½ m
17.
( ) ] [
? ?
·
+ +
=
·
+
dx
x cos x sin
x cos x 3sin – x) cos x sin ( x cos x sin
dx
x cos x sin
x cos x sin
2 2
2 2 2 2 2 2 2
2 2
6 6
1½ m
? ?
?
?
?
?
?
·
= dx 3 –
x cos x sin
1
2 2
– 1 0 2
PDF created with pdfFactory trial version www.pdffactory.com
6
?
?
?
?
?
?
?
·
+
= dx 3 –
x cos x sin
x cos x sin
2 2
2 2
½ m
( )
?
+ = dx 3 – x cosec x sec
2 2
½ m
= tan x – cot x – 3x + c 1½ m
(Accept – 2 cot 2x – 3x + c also)
OR
( )
?
+ dx 18 – 3x x 3 – x
2
( )
? ?
+ + + = dx 18 – 3x x
2
9
– dx 18 – 3x x 3 2x
2
1
2 2
1 m
( ) ( )
?
?
?
?
?
?
?
+ + · = dx
2
9
–
2
3
x
2
9
– 18 – 3x x
3
2
2
1
2
2
2
3
2
1½ m
( )
2
9
– 18 – 3x x
3
1
2
3
2
+ =
c 18 – 3x x
2
3
x log
8
81
– 18 – 3x x
2
2
3
x
2 2
+ + + + +
?
?
?
?
?
?
?
?
?
?
?
?
?
+
1½ m
or
( )
8
9
– 18 – 3x x
3
1
2
3
2
+ =
{ c 18 – 3x x
2
3
x log
2
81
– 18 – 3x x ) 3 2 (
2 2
+ + + + + + x
18.
dy
y – 1
y –
dx xe dy
x
y –
dx y – 1 e
2
x 2 x
= ? =
1 m
Integrating both sides
? ?
= dy
y – 1
2y –
2
1
dx xe
2
x
c y – 1 e – xe
2 x x
+ = ?
1+1 m
For x = 0, y = 1, c = – 1 1 – y – 1 1) – (x e : is solution
2 x
= ? ½+½ m
PDF created with pdfFactory trial version www.pdffactory.com
Read More