Area of square ABCD is equal to the area of rectangle PQRS. If the length of rectangle PQRS is 21% more than its breadth, then what is the ratio of perimeter of ABCD to perimeter of PQRS? 
  • a)
    100:110
  • b)
    210:220
  • c)
    220: 221
  • d)
    221: 220
  • e)
    220: 210
Correct answer is option 'C'. Can you explain this answer?

Related Test

Answers

Appoo Veena
May 17, 2022
Area of square=a^2;  Area of rectangle=l*b
As per the question a^2=l*b
l=(121/100)b=121b/100
a^2=121b/100*b
a=11b/10
Perimeter of ABCD=4a=44b/10
Perimeter of PQRS=2(l + b)=2(b+121b/100)=442b/100
Ratio=
Perimeter of ABCD: 
Perimeter of PQRS=44b/100:442b/100=220:221

Area of square=a^2; Area of rectangle=l*bAs per the question a^2=l*bl=(121/100)b=121b/100a^2=121b/100*ba=11b/10Perimeter of ABCD=4a=44b/10Perimeter of PQRS=2(l + b)=2(b+121b/100)=442b/100Ratio=Perimeter of ABCD:Perimeter of PQRS=44b/100:442b/100=220:221
Area of square=a^2; Area of rectangle=l*bAs per the question a^2=l*bl=(121/100)b=121b/100a^2=121b/100*ba=11b/10Perimeter of ABCD=4a=44b/10Perimeter of PQRS=2(l + b)=2(b+121b/100)=442b/100Ratio=Perimeter of ABCD:Perimeter of PQRS=44b/100:442b/100=220:221