JEE Exam  >  JEE Questions  >  The wavelength of the radiation emitted, when... Start Learning for Free
The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = 1.097 X 107 m-1)
  • a)
    91 nm
  • b)
    192 nm
  • c)
    406 nm
  • d)
    9,1 x 10-8 nm
Correct answer is option 'A'. Can you explain this answer?
Verified Answer
The wavelength of the radiation emitted, when in a hydrogen atom elect...

View all questions of this test
Most Upvoted Answer
The wavelength of the radiation emitted, when in a hydrogen atom elect...
The wavelength of the radiation emitted when an electron in a hydrogen atom falls from infinity to stationary state 1 can be determined using the Rydberg formula and the energy levels of the hydrogen atom.

The Rydberg formula is given by:

1/λ = R * (1/n₁² - 1/n₂²)

Where:
- λ is the wavelength of the emitted radiation
- R is the Rydberg constant (1.097 x 10^7 m^-1)
- n₁ is the initial energy level (infinity in this case)
- n₂ is the final energy level (1 in this case)

We need to find the wavelength, so let's substitute the given values into the formula:

1/λ = (1.097 x 10^7 m^-1) * (1/∞² - 1/1²)

Since 1/∞ is defined as 0, the formula simplifies to:

1/λ = (1.097 x 10^7 m^-1) * (0 - 1/1²)

1/λ = (1.097 x 10^7 m^-1) * (0 - 1)

1/λ = -1.097 x 10^7 m^-1

To find the wavelength, we need to take the reciprocal of both sides:

λ = -1 / (-1.097 x 10^7 m^-1)

λ = 1 / (1.097 x 10^7 m^-1)

λ ≈ 91 nm

Therefore, the wavelength of the radiation emitted when the electron falls from infinity to stationary state 1 is approximately 91 nm. Hence, option A is the correct answer.
Explore Courses for JEE exam
The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = 1.097 X 107 m-1)a)91 nmb)192 nmc)406 nmd)9,1 x 10-8 nmCorrect answer is option 'A'. Can you explain this answer?
Question Description
The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = 1.097 X 107 m-1)a)91 nmb)192 nmc)406 nmd)9,1 x 10-8 nmCorrect answer is option 'A'. Can you explain this answer? for JEE 2024 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = 1.097 X 107 m-1)a)91 nmb)192 nmc)406 nmd)9,1 x 10-8 nmCorrect answer is option 'A'. Can you explain this answer? covers all topics & solutions for JEE 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = 1.097 X 107 m-1)a)91 nmb)192 nmc)406 nmd)9,1 x 10-8 nmCorrect answer is option 'A'. Can you explain this answer?.
Solutions for The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = 1.097 X 107 m-1)a)91 nmb)192 nmc)406 nmd)9,1 x 10-8 nmCorrect answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = 1.097 X 107 m-1)a)91 nmb)192 nmc)406 nmd)9,1 x 10-8 nmCorrect answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = 1.097 X 107 m-1)a)91 nmb)192 nmc)406 nmd)9,1 x 10-8 nmCorrect answer is option 'A'. Can you explain this answer?, a detailed solution for The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = 1.097 X 107 m-1)a)91 nmb)192 nmc)406 nmd)9,1 x 10-8 nmCorrect answer is option 'A'. Can you explain this answer? has been provided alongside types of The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = 1.097 X 107 m-1)a)91 nmb)192 nmc)406 nmd)9,1 x 10-8 nmCorrect answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = 1.097 X 107 m-1)a)91 nmb)192 nmc)406 nmd)9,1 x 10-8 nmCorrect answer is option 'A'. Can you explain this answer? tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev