what is the effect of annulation on aromaticity ?

Answers

Dinesh Kukreja
Nov 13, 2018
According to energetic, electron delocalization, and geometrical indices, angular benzo-annelation increases, whereas linear benzo-annelation decreases, the extent of the local aromaticity of the central ring containing heteroatoms. 

The effect of benzo-annelation on the local aromaticity of the central ring of acridine (1), 9H-carbazole (2), dibenzofuran (3), and dibenzothiophene (4) was analyzed by means of the energy effects (ef), pairwise energy effects (pef), multicenter delocalization index (MCI), electron density at ring critical points (ρ(rC)), harmonic oscillator model of aromaticity (HOMA), and nucleus independent chemical shifts (NICS). According to energetic, electron delocalization, and geometrical indices, angular benzo-annelation increases, whereas linear benzo-annelation decreases, the extent of the local aromaticity of the central ring containing heteroatoms. The local aromaticity of the central heterocyclic ring in the examined molecules can significantly vary by applying different modes of benzo-annelation. The NICS values do not always support the results obtained by the other aromaticity indices and, in some cases, lead to completely opposite conclusions.

According to energetic, electron delocalization, and geometrical indices, angular benzo-annelation increases, whereas linear benzo-annelation decreases, the extent of the local aromaticity of the central ring containing heteroatoms.The effect of benzo-annelation on the local aromaticity of the central ring of acridine (1), 9H-carbazole (2), dibenzofuran (3), and dibenzothiophene (4) was analyzed by means of the energy effects (ef), pairwise energy effects (pef), multicenter delocalization index (MCI), electron density at ring critical points (ρ(rC)), harmonic oscillator model of aromaticity (HOMA), and nucleus independent chemical shifts (NICS). According to energetic, electron delocalization, and geometrical indices, angular benzo-annelation increases, whereas linear benzo-annelation decreases, the extent of the local aromaticity of the central ring containing heteroatoms. The local aromaticity of the central heterocyclic ring in the examined molecules can significantly vary by applying different modes of benzo-annelation. The NICS values do not always support the results obtained by the other aromaticity indices and, in some cases, lead to completely opposite conclusions.
According to energetic, electron delocalization, and geometrical indices, angular benzo-annelation increases, whereas linear benzo-annelation decreases, the extent of the local aromaticity of the central ring containing heteroatoms.The effect of benzo-annelation on the local aromaticity of the central ring of acridine (1), 9H-carbazole (2), dibenzofuran (3), and dibenzothiophene (4) was analyzed by means of the energy effects (ef), pairwise energy effects (pef), multicenter delocalization index (MCI), electron density at ring critical points (ρ(rC)), harmonic oscillator model of aromaticity (HOMA), and nucleus independent chemical shifts (NICS). According to energetic, electron delocalization, and geometrical indices, angular benzo-annelation increases, whereas linear benzo-annelation decreases, the extent of the local aromaticity of the central ring containing heteroatoms. The local aromaticity of the central heterocyclic ring in the examined molecules can significantly vary by applying different modes of benzo-annelation. The NICS values do not always support the results obtained by the other aromaticity indices and, in some cases, lead to completely opposite conclusions.