Page 1
H. A.M. ? G.M. ? H.M. INEQUALITIES
Theorem : If A, G, H are respectively AM, GM, HM between a & b both being unequal & positive then,
(i) G² = AH (ii) A > G > H (G > 0) . Note that A, G, H constitute a GP.
Let a
1
, a
2
, a
3
,....... a
n
be n positive real numbers, then we define their
A.M. =
n
a ...... a a a
n 3 2 1
? ? ? ?
, G.M. = (a
1
a
2
a
3
...........a
n
)
1/n
and H.M. =
n 2 1
a
1
.....
a
1
a
1
n
? ? ?
It can be shown that A.M. ? G.M. ? H.M. and equality holds at either places iff
a
1
= a
2
= a
3
= ............... = a
n
Ex. If a, b, c, d be four distinct positive quantities in G.P., then show that
(a) a + d > b + c (b)
?
?
?
?
?
?
? ? ? ?
ad
1
ac
1
bd
1
2
ab
1
cd
1
.
Sol. Since a, b, c d are in G.P., therefore
(a) using A.M. > G.M., we have for the first three terms
a c
2
?
> b i.e. a + c > 2b ....(1)
2
d b ?
> c i.e. b + d > 2c ....(2)
From results (1) and (2), we have a + c + b + d > 2b + 2c i.e. a + d > b + c
which is the desired result.
Page 2
H. A.M. ? G.M. ? H.M. INEQUALITIES
Theorem : If A, G, H are respectively AM, GM, HM between a & b both being unequal & positive then,
(i) G² = AH (ii) A > G > H (G > 0) . Note that A, G, H constitute a GP.
Let a
1
, a
2
, a
3
,....... a
n
be n positive real numbers, then we define their
A.M. =
n
a ...... a a a
n 3 2 1
? ? ? ?
, G.M. = (a
1
a
2
a
3
...........a
n
)
1/n
and H.M. =
n 2 1
a
1
.....
a
1
a
1
n
? ? ?
It can be shown that A.M. ? G.M. ? H.M. and equality holds at either places iff
a
1
= a
2
= a
3
= ............... = a
n
Ex. If a, b, c, d be four distinct positive quantities in G.P., then show that
(a) a + d > b + c (b)
?
?
?
?
?
?
? ? ? ?
ad
1
ac
1
bd
1
2
ab
1
cd
1
.
Sol. Since a, b, c d are in G.P., therefore
(a) using A.M. > G.M., we have for the first three terms
a c
2
?
> b i.e. a + c > 2b ....(1)
2
d b ?
> c i.e. b + d > 2c ....(2)
From results (1) and (2), we have a + c + b + d > 2b + 2c i.e. a + d > b + c
which is the desired result.
(b) using G.M. > H.M., we have for the first three terms b >
c a
ac 2
?
i.e. ab + bc > 2ac....(3)
and for the last three terms c >
2bd
b d ?
i.e. bc + cd > 2bd ....(4)
From results (3) and (4), we have ab + cd + 2bc > 2ac+ 2bd i.e. ab + cd > 2(ac + bd - bc)
i.e.
1 1 1 1 1
2
cd ab bd ac ad
? ?
? ? ? ?
? ?
? ?
[dividing both sides by abcd] which is the desired result.
Ex. If a, b, c are in H.P. and they are distinct and positive then prove that a
n
+ c
n
> 2b
n
Sol. Let a
n
and c
n
be two numbers then
2
c a
n n
?
> (a
n
c
n
)
1/2
? a
n
+ c
n
> 2 (ac)
n/2
.....(i)
Also G.M. > H.M. i.e.
ac
> b (ac)
n/2
> b
n
.....(ii) hence from (i) and (ii) a
n
+ c
n
> 2b
n
Ex. Show that n
n
n 2
2
1 n
?
?
?
?
?
? ?
> (n !)
3
.
Sol. Consider the unequal positive numbers 1
3
, 2
3
, ........n
3
.
Since A.M. > G.M., therefore
n
n ...... 2 1
3 3 3
? ? ?
> (1
3
. 2
3
....n
3
)
1/n
, i.e.,
4
) 1 n ( n
2
?
> {(n !)
3
}
1/n
.
Raising both sides to power n, we have n
n
n 2
2
1 n
?
?
?
?
?
? ?
> (n !)
3
.
Ex. If a, b, c are positive real numbers such that a + b + c = 1, then find the minimum value of
ac
1
bc
1
ab
1
? ?
.
Sol.
abc
1
abc
c b a
ac
1
bc
1
ab
1
?
? ?
? ? ?
Also,
3
c b a ? ?
? (abc)
1/3
? abc ?
27
1
?
abc
1
? 27. Hence
ac
1
bc
1
ab
1
? ?
? 27
Ex. In the equation x
4
+px
3
+qx
2
+rx+5=0 has four positive real roots, then find the minimum value of pr.
Sol. Let ? ? ?? ? ? ?? ?? be the four positive real roots of the given equation. Then
? ? ? ? ? ? ? ? ? ? ? ? ? = –p, ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ?? = q, ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = –r, ? ? ? ? = 5.
Using A.M. ? G.M. ? ? ?
5
4
.
4
4 3 3 3 3
4
? ? ? ?? ? ? ? ? ? ? ? ?? ?
? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ?
?
?
?
?
?
?
? ?
?
?
?
?
?
?
4
r
4
p
? 5 ? pr ? 80 ? minimum value of pr = 80.
Ex.65 If
S = a+b+ c then prove that
S
S a ?
+
S
S b ?
+
S
S c ?
>
9
2
where a
,
b & c are distinct positive reals.
Sol.
(S a) S b) (S c)
3
? ? ? ? ?
>
? ?
( ) ( ) ( )
/
S a S b S c ? ? ?
1 3
........(i)
Page 3
H. A.M. ? G.M. ? H.M. INEQUALITIES
Theorem : If A, G, H are respectively AM, GM, HM between a & b both being unequal & positive then,
(i) G² = AH (ii) A > G > H (G > 0) . Note that A, G, H constitute a GP.
Let a
1
, a
2
, a
3
,....... a
n
be n positive real numbers, then we define their
A.M. =
n
a ...... a a a
n 3 2 1
? ? ? ?
, G.M. = (a
1
a
2
a
3
...........a
n
)
1/n
and H.M. =
n 2 1
a
1
.....
a
1
a
1
n
? ? ?
It can be shown that A.M. ? G.M. ? H.M. and equality holds at either places iff
a
1
= a
2
= a
3
= ............... = a
n
Ex. If a, b, c, d be four distinct positive quantities in G.P., then show that
(a) a + d > b + c (b)
?
?
?
?
?
?
? ? ? ?
ad
1
ac
1
bd
1
2
ab
1
cd
1
.
Sol. Since a, b, c d are in G.P., therefore
(a) using A.M. > G.M., we have for the first three terms
a c
2
?
> b i.e. a + c > 2b ....(1)
2
d b ?
> c i.e. b + d > 2c ....(2)
From results (1) and (2), we have a + c + b + d > 2b + 2c i.e. a + d > b + c
which is the desired result.
(b) using G.M. > H.M., we have for the first three terms b >
c a
ac 2
?
i.e. ab + bc > 2ac....(3)
and for the last three terms c >
2bd
b d ?
i.e. bc + cd > 2bd ....(4)
From results (3) and (4), we have ab + cd + 2bc > 2ac+ 2bd i.e. ab + cd > 2(ac + bd - bc)
i.e.
1 1 1 1 1
2
cd ab bd ac ad
? ?
? ? ? ?
? ?
? ?
[dividing both sides by abcd] which is the desired result.
Ex. If a, b, c are in H.P. and they are distinct and positive then prove that a
n
+ c
n
> 2b
n
Sol. Let a
n
and c
n
be two numbers then
2
c a
n n
?
> (a
n
c
n
)
1/2
? a
n
+ c
n
> 2 (ac)
n/2
.....(i)
Also G.M. > H.M. i.e.
ac
> b (ac)
n/2
> b
n
.....(ii) hence from (i) and (ii) a
n
+ c
n
> 2b
n
Ex. Show that n
n
n 2
2
1 n
?
?
?
?
?
? ?
> (n !)
3
.
Sol. Consider the unequal positive numbers 1
3
, 2
3
, ........n
3
.
Since A.M. > G.M., therefore
n
n ...... 2 1
3 3 3
? ? ?
> (1
3
. 2
3
....n
3
)
1/n
, i.e.,
4
) 1 n ( n
2
?
> {(n !)
3
}
1/n
.
Raising both sides to power n, we have n
n
n 2
2
1 n
?
?
?
?
?
? ?
> (n !)
3
.
Ex. If a, b, c are positive real numbers such that a + b + c = 1, then find the minimum value of
ac
1
bc
1
ab
1
? ?
.
Sol.
abc
1
abc
c b a
ac
1
bc
1
ab
1
?
? ?
? ? ?
Also,
3
c b a ? ?
? (abc)
1/3
? abc ?
27
1
?
abc
1
? 27. Hence
ac
1
bc
1
ab
1
? ?
? 27
Ex. In the equation x
4
+px
3
+qx
2
+rx+5=0 has four positive real roots, then find the minimum value of pr.
Sol. Let ? ? ?? ? ? ?? ?? be the four positive real roots of the given equation. Then
? ? ? ? ? ? ? ? ? ? ? ? ? = –p, ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ?? = q, ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = –r, ? ? ? ? = 5.
Using A.M. ? G.M. ? ? ?
5
4
.
4
4 3 3 3 3
4
? ? ? ?? ? ? ? ? ? ? ? ?? ?
? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ?
?
?
?
?
?
?
? ?
?
?
?
?
?
?
4
r
4
p
? 5 ? pr ? 80 ? minimum value of pr = 80.
Ex.65 If
S = a+b+ c then prove that
S
S a ?
+
S
S b ?
+
S
S c ?
>
9
2
where a
,
b & c are distinct positive reals.
Sol.
(S a) S b) (S c)
3
? ? ? ? ?
>
? ?
( ) ( ) ( )
/
S a S b S c ? ? ?
1 3
........(i)
&
1
3
1 1 1
S a S b S c ?
?
?
?
?
?
?
?
?
?
?
>
1 1 1
1 3
S a S b S c ?
?
?
?
?
?
?
?
?
?
?
/
........(ii)
Multiple (i) & (ii) =
1
9
2 (a + b + c)
1 1 1
S a S b S c ?
?
?
?
?
?
?
?
?
?
?
>
1
=
2
9
S S S
S a S b S c
? ?
? ?
? ?
? ? ?
? ?
>
1 or
S
S a ?
+
S
S b ?
+
S
S c ?
>
9
2
Ex.66 Let a > 1 and n ? N . Prove the inequality, a
n
? 1 ? n ( ) a a
n n ? ?
?
1
2
1
2
.
Sol. Put a = ?
2
T P T ? ?? ?
2n
? 1 ? ? ? n ( ?
n + 1
? ? ?
n ? 1
) ? ? ? ?
2n
? 1 ? ? ?
n ?
n ? 1
( ?
2
? 1) ?
?
?
2
2
1
1
n
?
?
? n . ?
n ? 1
? ? ?1 + ?
2
+ ?
4
+ ...... + a
2 (n ? 1)
? n ?
n ? 1
?
1
2 4 2 1
. . . . . . . . . .
( )
? ? ?
n
n
?
. Which is True as A.M. ?
G.M.
Ex. If
s
be the sum of
n
positive unequal quantities a, b, c then prove the inequality ;
s
s a
s
s b
s
s c ? ? ?
? ?
+ ...... >
n
n
2
1 ?
(n ? 2).
Sol. AM > GM ? [(s ? a) + (s ? b) + (s ? c) + ...... ] > n [(s ? a) + (s ? b) + (s ? c) + ...... ]
1/n
?
1 1 1
s a s b s c ?
?
?
?
?
?
?
?
?
?
?
?
. . . . . .
> n
1
1
( ) ( ) ( )
/
s a s b s c
n
? ? ?
?
?
?
?
?
?
Multiplying [(s ? a) + (s ? b) + ...... ]
1 1 1
s a s b s c ?
?
?
?
?
?
?
?
?
?
?
?
. . . . . .
> n
2
or
( ) ( ) ( )
. . . . . .
s a
s
s b
s
s c
s
?
?
?
?
?
?
?
?
?
?
?
?
s
s a
s
s b
s
s c ?
?
?
?
?
?
?
?
?
?
?
?
. . . . . .
> n
2
?
s
s a
s
s b
s
s c ?
?
?
?
?
?
?
?
?
?
?
?
. . . . . .
n s s
s
? ?
?
?
?
?
? > n
2
or
s a
s
s b
s
s c
s
?
?
?
?
?
+ ...... >
n
n
2
1 ?
Ex. If a, b, c, d are all positive and the sum of any three is greater than twice the fourth, then show that,
a b c d
>
(b + c + d ? 2a)
(c + d + a ? 2b)
(d + a + b ? 2c)
(a + b + c ? 2d).
Sol. Use A.M. > G.M.
a + b + c ? 2d = m
1
, b + c + d ? 2a = m
2
, c + d + a ? 2b = m
3
, d + a + b ? 2c = m
4
Now m
1
+ m
2
+ m
3
= 3
c ? c =
m m m
1 2 3
3
? ?
> (m
1
m
2
m
3
)
1/3
m
2
+ m
3
+ m
4
= 3
d ? d =
m m m
2 3 4
3
? ?
> (m
2
m
3
m
4
)
1/3
m
3
+ m
4
+ m
1
= 3
a ? a =
m m m
3 4 1
3
? ?
> (m
3
m
4
m
1
)
1/3
m
4
+ m
1
+ m
2
= 3
b ? b =
m m m
4 1 2
3
? ?
> (m
4
m
1
m
2
)
1/3
Hence a b c d > m
1
m
2
m
3
m
4
? Result
Page 4
H. A.M. ? G.M. ? H.M. INEQUALITIES
Theorem : If A, G, H are respectively AM, GM, HM between a & b both being unequal & positive then,
(i) G² = AH (ii) A > G > H (G > 0) . Note that A, G, H constitute a GP.
Let a
1
, a
2
, a
3
,....... a
n
be n positive real numbers, then we define their
A.M. =
n
a ...... a a a
n 3 2 1
? ? ? ?
, G.M. = (a
1
a
2
a
3
...........a
n
)
1/n
and H.M. =
n 2 1
a
1
.....
a
1
a
1
n
? ? ?
It can be shown that A.M. ? G.M. ? H.M. and equality holds at either places iff
a
1
= a
2
= a
3
= ............... = a
n
Ex. If a, b, c, d be four distinct positive quantities in G.P., then show that
(a) a + d > b + c (b)
?
?
?
?
?
?
? ? ? ?
ad
1
ac
1
bd
1
2
ab
1
cd
1
.
Sol. Since a, b, c d are in G.P., therefore
(a) using A.M. > G.M., we have for the first three terms
a c
2
?
> b i.e. a + c > 2b ....(1)
2
d b ?
> c i.e. b + d > 2c ....(2)
From results (1) and (2), we have a + c + b + d > 2b + 2c i.e. a + d > b + c
which is the desired result.
(b) using G.M. > H.M., we have for the first three terms b >
c a
ac 2
?
i.e. ab + bc > 2ac....(3)
and for the last three terms c >
2bd
b d ?
i.e. bc + cd > 2bd ....(4)
From results (3) and (4), we have ab + cd + 2bc > 2ac+ 2bd i.e. ab + cd > 2(ac + bd - bc)
i.e.
1 1 1 1 1
2
cd ab bd ac ad
? ?
? ? ? ?
? ?
? ?
[dividing both sides by abcd] which is the desired result.
Ex. If a, b, c are in H.P. and they are distinct and positive then prove that a
n
+ c
n
> 2b
n
Sol. Let a
n
and c
n
be two numbers then
2
c a
n n
?
> (a
n
c
n
)
1/2
? a
n
+ c
n
> 2 (ac)
n/2
.....(i)
Also G.M. > H.M. i.e.
ac
> b (ac)
n/2
> b
n
.....(ii) hence from (i) and (ii) a
n
+ c
n
> 2b
n
Ex. Show that n
n
n 2
2
1 n
?
?
?
?
?
? ?
> (n !)
3
.
Sol. Consider the unequal positive numbers 1
3
, 2
3
, ........n
3
.
Since A.M. > G.M., therefore
n
n ...... 2 1
3 3 3
? ? ?
> (1
3
. 2
3
....n
3
)
1/n
, i.e.,
4
) 1 n ( n
2
?
> {(n !)
3
}
1/n
.
Raising both sides to power n, we have n
n
n 2
2
1 n
?
?
?
?
?
? ?
> (n !)
3
.
Ex. If a, b, c are positive real numbers such that a + b + c = 1, then find the minimum value of
ac
1
bc
1
ab
1
? ?
.
Sol.
abc
1
abc
c b a
ac
1
bc
1
ab
1
?
? ?
? ? ?
Also,
3
c b a ? ?
? (abc)
1/3
? abc ?
27
1
?
abc
1
? 27. Hence
ac
1
bc
1
ab
1
? ?
? 27
Ex. In the equation x
4
+px
3
+qx
2
+rx+5=0 has four positive real roots, then find the minimum value of pr.
Sol. Let ? ? ?? ? ? ?? ?? be the four positive real roots of the given equation. Then
? ? ? ? ? ? ? ? ? ? ? ? ? = –p, ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ?? = q, ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = –r, ? ? ? ? = 5.
Using A.M. ? G.M. ? ? ?
5
4
.
4
4 3 3 3 3
4
? ? ? ?? ? ? ? ? ? ? ? ?? ?
? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ?
?
?
?
?
?
?
? ?
?
?
?
?
?
?
4
r
4
p
? 5 ? pr ? 80 ? minimum value of pr = 80.
Ex.65 If
S = a+b+ c then prove that
S
S a ?
+
S
S b ?
+
S
S c ?
>
9
2
where a
,
b & c are distinct positive reals.
Sol.
(S a) S b) (S c)
3
? ? ? ? ?
>
? ?
( ) ( ) ( )
/
S a S b S c ? ? ?
1 3
........(i)
&
1
3
1 1 1
S a S b S c ?
?
?
?
?
?
?
?
?
?
?
>
1 1 1
1 3
S a S b S c ?
?
?
?
?
?
?
?
?
?
?
/
........(ii)
Multiple (i) & (ii) =
1
9
2 (a + b + c)
1 1 1
S a S b S c ?
?
?
?
?
?
?
?
?
?
?
>
1
=
2
9
S S S
S a S b S c
? ?
? ?
? ?
? ? ?
? ?
>
1 or
S
S a ?
+
S
S b ?
+
S
S c ?
>
9
2
Ex.66 Let a > 1 and n ? N . Prove the inequality, a
n
? 1 ? n ( ) a a
n n ? ?
?
1
2
1
2
.
Sol. Put a = ?
2
T P T ? ?? ?
2n
? 1 ? ? ? n ( ?
n + 1
? ? ?
n ? 1
) ? ? ? ?
2n
? 1 ? ? ?
n ?
n ? 1
( ?
2
? 1) ?
?
?
2
2
1
1
n
?
?
? n . ?
n ? 1
? ? ?1 + ?
2
+ ?
4
+ ...... + a
2 (n ? 1)
? n ?
n ? 1
?
1
2 4 2 1
. . . . . . . . . .
( )
? ? ?
n
n
?
. Which is True as A.M. ?
G.M.
Ex. If
s
be the sum of
n
positive unequal quantities a, b, c then prove the inequality ;
s
s a
s
s b
s
s c ? ? ?
? ?
+ ...... >
n
n
2
1 ?
(n ? 2).
Sol. AM > GM ? [(s ? a) + (s ? b) + (s ? c) + ...... ] > n [(s ? a) + (s ? b) + (s ? c) + ...... ]
1/n
?
1 1 1
s a s b s c ?
?
?
?
?
?
?
?
?
?
?
?
. . . . . .
> n
1
1
( ) ( ) ( )
/
s a s b s c
n
? ? ?
?
?
?
?
?
?
Multiplying [(s ? a) + (s ? b) + ...... ]
1 1 1
s a s b s c ?
?
?
?
?
?
?
?
?
?
?
?
. . . . . .
> n
2
or
( ) ( ) ( )
. . . . . .
s a
s
s b
s
s c
s
?
?
?
?
?
?
?
?
?
?
?
?
s
s a
s
s b
s
s c ?
?
?
?
?
?
?
?
?
?
?
?
. . . . . .
> n
2
?
s
s a
s
s b
s
s c ?
?
?
?
?
?
?
?
?
?
?
?
. . . . . .
n s s
s
? ?
?
?
?
?
? > n
2
or
s a
s
s b
s
s c
s
?
?
?
?
?
+ ...... >
n
n
2
1 ?
Ex. If a, b, c, d are all positive and the sum of any three is greater than twice the fourth, then show that,
a b c d
>
(b + c + d ? 2a)
(c + d + a ? 2b)
(d + a + b ? 2c)
(a + b + c ? 2d).
Sol. Use A.M. > G.M.
a + b + c ? 2d = m
1
, b + c + d ? 2a = m
2
, c + d + a ? 2b = m
3
, d + a + b ? 2c = m
4
Now m
1
+ m
2
+ m
3
= 3
c ? c =
m m m
1 2 3
3
? ?
> (m
1
m
2
m
3
)
1/3
m
2
+ m
3
+ m
4
= 3
d ? d =
m m m
2 3 4
3
? ?
> (m
2
m
3
m
4
)
1/3
m
3
+ m
4
+ m
1
= 3
a ? a =
m m m
3 4 1
3
? ?
> (m
3
m
4
m
1
)
1/3
m
4
+ m
1
+ m
2
= 3
b ? b =
m m m
4 1 2
3
? ?
> (m
4
m
1
m
2
)
1/3
Hence a b c d > m
1
m
2
m
3
m
4
? Result
Ex. If the polynomial f (x) = 4x
4
– ax
3
+ bx
2
– cx + 5 where a,b,c ? R has four positive real roots say
r
1
, r
2
, r
3
and r
4
, such that
2
r
1
+
4
r
2
+
5
r
3
+
8
r
4
= 1. Find the value of 'a'.
Sol. Consider 4 positive terms
2
r
1
,
4
r
2
,
5
r
3
,
8
r
4
A.M. =
4
1
?
?
?
?
?
?
?
?
? ? ?
8
r
5
r
4
r
2
r
4 3 2 1
=
4
1
× 1 =
4
1
G.M. =
4 1
4 3 2 1
8
r
·
5
r
·
4
r
·
2
r
?
?
?
?
?
?
?
?
=
4 1
4 3 2 1
8 · 5 · 4 · 2
r · r · r · r
?
?
?
?
?
?
?
?
now, r
1
r
2
r
3
r
4
=
4
5
? ? ?G.M. =
4 1
) 8 · 5 · 4 · 2 ( 4
5
?
?
?
?
?
?
?
?
=
4 1
8
2
1
?
?
?
?
?
?
=
4
1
. Hence A.M. = G.M. ? ? ? ?All numbers are equal
2
r
1
=
4
r
2
=
5
r
3
=
8
r
4
= k ? ? ?r
1
= 2k; r
2
= 4k; r
3
= 5k; r
4
= 8k
? ? ?
?
1
r = (2 · 4 · 5 · 8)k
4
?
4
5
= (2 · 4 · 5 · 8)k
4
? k = 1/4
hence r
1
=
2
1
; r
2
= 1; r
3
=
4
5
; r
4
= 2 ?
?
1
r =
4
19
but r
1
+ r
2
+ r
3
+ r
4
=
4
a
?
4
19
=
4
a
? a = 19
Ex. If x > 0 and n ? N , show that
x
x x x
n
n
1
2 2
? ? ? ? . . . . . .
?
1
1 2 ? n
.
Sol. x
k
+ x
?k
? 2, k = 1, 2, 3, ...... , n ? 1 +
k
n
?
?
1
(x
k
+ x
?k
) ? 2
n + 1 Expand ? and interpret
Ex. If a
1
, a
2
,......,a
n
are n distinct odd natural numbers not divisible by any prime greater than 5, then
prove that
n 2 1
a
1
...
a
1
a
1
? ? ?
< 2.
Sol. Since each a
i
is an odd number not divisible by a prime greater than 5, a
i
can be written as
a
i
= 3
r
5
s
where r, s are non-negative integers. Thus, for all n ? N.
n 2 1
a
1
...
a
1
a
1
? ? ?
<
?
?
?
?
?
?
? ? ? ?
?
?
?
?
?
? ? ? ....
5
1
5
1
1 ....
3
1
3
1
1
2 2
=
?
?
?
?
?
?
? 3 / 1 1
1
?
?
?
?
?
?
? 5 / 1 1
1
=
?
?
?
?
?
?
2
3
?
?
?
?
?
?
4
5
=
8
15
< 2.
Ex. A
1
, A
2
,...., A
n
are n A.M’s, and H
1
, H
2
,....., H
n
are n H.M’s inserted between a and b. Prove that
2
2
n 1
n 1
G
A
H H
A A
?
?
?
, where A is the arithmetic mean and G is the geometric mean of a and b.
Sol. Since A
1
, A
2
,...., A
n
are n arithmetic means between a and b,
A
1
=
1 n
nb a
A ,
1 n
b na
n
?
?
?
?
?
? A
1
+ A
n
= a + b ...(1) Also,
1 n
1 a nb 1 an b
,
H (n 1)ab H (n 1)ab
? ?
? ?
? ?
....(2)
Page 5
H. A.M. ? G.M. ? H.M. INEQUALITIES
Theorem : If A, G, H are respectively AM, GM, HM between a & b both being unequal & positive then,
(i) G² = AH (ii) A > G > H (G > 0) . Note that A, G, H constitute a GP.
Let a
1
, a
2
, a
3
,....... a
n
be n positive real numbers, then we define their
A.M. =
n
a ...... a a a
n 3 2 1
? ? ? ?
, G.M. = (a
1
a
2
a
3
...........a
n
)
1/n
and H.M. =
n 2 1
a
1
.....
a
1
a
1
n
? ? ?
It can be shown that A.M. ? G.M. ? H.M. and equality holds at either places iff
a
1
= a
2
= a
3
= ............... = a
n
Ex. If a, b, c, d be four distinct positive quantities in G.P., then show that
(a) a + d > b + c (b)
?
?
?
?
?
?
? ? ? ?
ad
1
ac
1
bd
1
2
ab
1
cd
1
.
Sol. Since a, b, c d are in G.P., therefore
(a) using A.M. > G.M., we have for the first three terms
a c
2
?
> b i.e. a + c > 2b ....(1)
2
d b ?
> c i.e. b + d > 2c ....(2)
From results (1) and (2), we have a + c + b + d > 2b + 2c i.e. a + d > b + c
which is the desired result.
(b) using G.M. > H.M., we have for the first three terms b >
c a
ac 2
?
i.e. ab + bc > 2ac....(3)
and for the last three terms c >
2bd
b d ?
i.e. bc + cd > 2bd ....(4)
From results (3) and (4), we have ab + cd + 2bc > 2ac+ 2bd i.e. ab + cd > 2(ac + bd - bc)
i.e.
1 1 1 1 1
2
cd ab bd ac ad
? ?
? ? ? ?
? ?
? ?
[dividing both sides by abcd] which is the desired result.
Ex. If a, b, c are in H.P. and they are distinct and positive then prove that a
n
+ c
n
> 2b
n
Sol. Let a
n
and c
n
be two numbers then
2
c a
n n
?
> (a
n
c
n
)
1/2
? a
n
+ c
n
> 2 (ac)
n/2
.....(i)
Also G.M. > H.M. i.e.
ac
> b (ac)
n/2
> b
n
.....(ii) hence from (i) and (ii) a
n
+ c
n
> 2b
n
Ex. Show that n
n
n 2
2
1 n
?
?
?
?
?
? ?
> (n !)
3
.
Sol. Consider the unequal positive numbers 1
3
, 2
3
, ........n
3
.
Since A.M. > G.M., therefore
n
n ...... 2 1
3 3 3
? ? ?
> (1
3
. 2
3
....n
3
)
1/n
, i.e.,
4
) 1 n ( n
2
?
> {(n !)
3
}
1/n
.
Raising both sides to power n, we have n
n
n 2
2
1 n
?
?
?
?
?
? ?
> (n !)
3
.
Ex. If a, b, c are positive real numbers such that a + b + c = 1, then find the minimum value of
ac
1
bc
1
ab
1
? ?
.
Sol.
abc
1
abc
c b a
ac
1
bc
1
ab
1
?
? ?
? ? ?
Also,
3
c b a ? ?
? (abc)
1/3
? abc ?
27
1
?
abc
1
? 27. Hence
ac
1
bc
1
ab
1
? ?
? 27
Ex. In the equation x
4
+px
3
+qx
2
+rx+5=0 has four positive real roots, then find the minimum value of pr.
Sol. Let ? ? ?? ? ? ?? ?? be the four positive real roots of the given equation. Then
? ? ? ? ? ? ? ? ? ? ? ? ? = –p, ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ?? = q, ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = –r, ? ? ? ? = 5.
Using A.M. ? G.M. ? ? ?
5
4
.
4
4 3 3 3 3
4
? ? ? ?? ? ? ? ? ? ? ? ?? ?
? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ?
?
?
?
?
?
?
? ?
?
?
?
?
?
?
4
r
4
p
? 5 ? pr ? 80 ? minimum value of pr = 80.
Ex.65 If
S = a+b+ c then prove that
S
S a ?
+
S
S b ?
+
S
S c ?
>
9
2
where a
,
b & c are distinct positive reals.
Sol.
(S a) S b) (S c)
3
? ? ? ? ?
>
? ?
( ) ( ) ( )
/
S a S b S c ? ? ?
1 3
........(i)
&
1
3
1 1 1
S a S b S c ?
?
?
?
?
?
?
?
?
?
?
>
1 1 1
1 3
S a S b S c ?
?
?
?
?
?
?
?
?
?
?
/
........(ii)
Multiple (i) & (ii) =
1
9
2 (a + b + c)
1 1 1
S a S b S c ?
?
?
?
?
?
?
?
?
?
?
>
1
=
2
9
S S S
S a S b S c
? ?
? ?
? ?
? ? ?
? ?
>
1 or
S
S a ?
+
S
S b ?
+
S
S c ?
>
9
2
Ex.66 Let a > 1 and n ? N . Prove the inequality, a
n
? 1 ? n ( ) a a
n n ? ?
?
1
2
1
2
.
Sol. Put a = ?
2
T P T ? ?? ?
2n
? 1 ? ? ? n ( ?
n + 1
? ? ?
n ? 1
) ? ? ? ?
2n
? 1 ? ? ?
n ?
n ? 1
( ?
2
? 1) ?
?
?
2
2
1
1
n
?
?
? n . ?
n ? 1
? ? ?1 + ?
2
+ ?
4
+ ...... + a
2 (n ? 1)
? n ?
n ? 1
?
1
2 4 2 1
. . . . . . . . . .
( )
? ? ?
n
n
?
. Which is True as A.M. ?
G.M.
Ex. If
s
be the sum of
n
positive unequal quantities a, b, c then prove the inequality ;
s
s a
s
s b
s
s c ? ? ?
? ?
+ ...... >
n
n
2
1 ?
(n ? 2).
Sol. AM > GM ? [(s ? a) + (s ? b) + (s ? c) + ...... ] > n [(s ? a) + (s ? b) + (s ? c) + ...... ]
1/n
?
1 1 1
s a s b s c ?
?
?
?
?
?
?
?
?
?
?
?
. . . . . .
> n
1
1
( ) ( ) ( )
/
s a s b s c
n
? ? ?
?
?
?
?
?
?
Multiplying [(s ? a) + (s ? b) + ...... ]
1 1 1
s a s b s c ?
?
?
?
?
?
?
?
?
?
?
?
. . . . . .
> n
2
or
( ) ( ) ( )
. . . . . .
s a
s
s b
s
s c
s
?
?
?
?
?
?
?
?
?
?
?
?
s
s a
s
s b
s
s c ?
?
?
?
?
?
?
?
?
?
?
?
. . . . . .
> n
2
?
s
s a
s
s b
s
s c ?
?
?
?
?
?
?
?
?
?
?
?
. . . . . .
n s s
s
? ?
?
?
?
?
? > n
2
or
s a
s
s b
s
s c
s
?
?
?
?
?
+ ...... >
n
n
2
1 ?
Ex. If a, b, c, d are all positive and the sum of any three is greater than twice the fourth, then show that,
a b c d
>
(b + c + d ? 2a)
(c + d + a ? 2b)
(d + a + b ? 2c)
(a + b + c ? 2d).
Sol. Use A.M. > G.M.
a + b + c ? 2d = m
1
, b + c + d ? 2a = m
2
, c + d + a ? 2b = m
3
, d + a + b ? 2c = m
4
Now m
1
+ m
2
+ m
3
= 3
c ? c =
m m m
1 2 3
3
? ?
> (m
1
m
2
m
3
)
1/3
m
2
+ m
3
+ m
4
= 3
d ? d =
m m m
2 3 4
3
? ?
> (m
2
m
3
m
4
)
1/3
m
3
+ m
4
+ m
1
= 3
a ? a =
m m m
3 4 1
3
? ?
> (m
3
m
4
m
1
)
1/3
m
4
+ m
1
+ m
2
= 3
b ? b =
m m m
4 1 2
3
? ?
> (m
4
m
1
m
2
)
1/3
Hence a b c d > m
1
m
2
m
3
m
4
? Result
Ex. If the polynomial f (x) = 4x
4
– ax
3
+ bx
2
– cx + 5 where a,b,c ? R has four positive real roots say
r
1
, r
2
, r
3
and r
4
, such that
2
r
1
+
4
r
2
+
5
r
3
+
8
r
4
= 1. Find the value of 'a'.
Sol. Consider 4 positive terms
2
r
1
,
4
r
2
,
5
r
3
,
8
r
4
A.M. =
4
1
?
?
?
?
?
?
?
?
? ? ?
8
r
5
r
4
r
2
r
4 3 2 1
=
4
1
× 1 =
4
1
G.M. =
4 1
4 3 2 1
8
r
·
5
r
·
4
r
·
2
r
?
?
?
?
?
?
?
?
=
4 1
4 3 2 1
8 · 5 · 4 · 2
r · r · r · r
?
?
?
?
?
?
?
?
now, r
1
r
2
r
3
r
4
=
4
5
? ? ?G.M. =
4 1
) 8 · 5 · 4 · 2 ( 4
5
?
?
?
?
?
?
?
?
=
4 1
8
2
1
?
?
?
?
?
?
=
4
1
. Hence A.M. = G.M. ? ? ? ?All numbers are equal
2
r
1
=
4
r
2
=
5
r
3
=
8
r
4
= k ? ? ?r
1
= 2k; r
2
= 4k; r
3
= 5k; r
4
= 8k
? ? ?
?
1
r = (2 · 4 · 5 · 8)k
4
?
4
5
= (2 · 4 · 5 · 8)k
4
? k = 1/4
hence r
1
=
2
1
; r
2
= 1; r
3
=
4
5
; r
4
= 2 ?
?
1
r =
4
19
but r
1
+ r
2
+ r
3
+ r
4
=
4
a
?
4
19
=
4
a
? a = 19
Ex. If x > 0 and n ? N , show that
x
x x x
n
n
1
2 2
? ? ? ? . . . . . .
?
1
1 2 ? n
.
Sol. x
k
+ x
?k
? 2, k = 1, 2, 3, ...... , n ? 1 +
k
n
?
?
1
(x
k
+ x
?k
) ? 2
n + 1 Expand ? and interpret
Ex. If a
1
, a
2
,......,a
n
are n distinct odd natural numbers not divisible by any prime greater than 5, then
prove that
n 2 1
a
1
...
a
1
a
1
? ? ?
< 2.
Sol. Since each a
i
is an odd number not divisible by a prime greater than 5, a
i
can be written as
a
i
= 3
r
5
s
where r, s are non-negative integers. Thus, for all n ? N.
n 2 1
a
1
...
a
1
a
1
? ? ?
<
?
?
?
?
?
?
? ? ? ?
?
?
?
?
?
? ? ? ....
5
1
5
1
1 ....
3
1
3
1
1
2 2
=
?
?
?
?
?
?
? 3 / 1 1
1
?
?
?
?
?
?
? 5 / 1 1
1
=
?
?
?
?
?
?
2
3
?
?
?
?
?
?
4
5
=
8
15
< 2.
Ex. A
1
, A
2
,...., A
n
are n A.M’s, and H
1
, H
2
,....., H
n
are n H.M’s inserted between a and b. Prove that
2
2
n 1
n 1
G
A
H H
A A
?
?
?
, where A is the arithmetic mean and G is the geometric mean of a and b.
Sol. Since A
1
, A
2
,...., A
n
are n arithmetic means between a and b,
A
1
=
1 n
nb a
A ,
1 n
b na
n
?
?
?
?
?
? A
1
+ A
n
= a + b ...(1) Also,
1 n
1 a nb 1 an b
,
H (n 1)ab H (n 1)ab
? ?
? ?
? ?
....(2)
From (1) and (2)
1 n
1 n
A A a b
(n 1)ab (n 1)ab
H H
a nb b na
? ?
?
? ?
?
?
? ?
=
? ? ?
? ? ? ?
(b na)(a nb)(a b)
(n 1)ab(na b nb a)
? ?
?
?
2
(b na)(a nb)
(n 1) ab
<
2
2
na b a nb 1
2
(n 1) ab
? ? ? ? ?
? ?
? ? ?
2 2
2
(a b) A
4ab
G
?
? ?
?
2
2
n 1
n 1
G
A
H H
A A
?
?
?
.
Ex If a
,
b
,
c are real and positive
,
prove that the inequality ,
1 1 1
a b c
? ?
<
a b c
a b c
8 8 8
3 3 3
? ?
.
So This is equivalent to showing that , a
8
+
b
8
+
c
8
>
a
2
b
2
c
2
(a
b
+
b
c
+
c
a)
or
a
b c
6
2 2
+
b
a c
6
2 2
+
c
a b
6
2 2
> a
b
+
b
c
+
c
a ? (1)
Now
a
b c
b
a c
3 3
2
?
?
?
?
?
?
? >
0 ?
a
b c
6
2 2
+
b
c a
6
2 2
>
2
2 2
2
a b
c
Thus
a
b c
6
2 2
+
b
a c
6
2 2
+
c
a b
6
2 2
>
a b
c
2 2
2
+
b c
a
2 2
2
+
c a
b
2 2
2
again
a b
c
b c
a
?
?
?
?
?
?
?
2
>
0 ?
a b
c
2 2
2
+
b c
a
2 2
2
> 2 b
2
Thus
a b
c
2 2
2
+
b c
a
2 2
2
+
c a
b
2 2
2
> a
2
+
b
2
+
c
2
Finally it is well known that , a
2
+
b
2
+
c
2
>
a
b + b
c + c
a
Ex. Establish the inequality
, 1 +
1
2
1
3
1
? ? ? . . . . . .
n
> 2
[
n ? 1
? n ].
Sol. r r r r ? ? ? ? 1 or 2
r r r ? ? ? 1
or
1
2
1
1 r r r
?
? ?
or
1
2
1
r
r r ? ? ? or
? ?
1
2 1
r
r r ? ? ?
Ex. Prove that for any positive integer n > 1 the inequality 1 +
2
1
+
3
1
+ .... +
n
1
> 2 (
1 n ?
– n )
holds true.
Sol. To prove this, reduce each term of the sum in the left-hand member:
1 k k
2
k
1
? ?
?
= 2(
1 k ?
–
k
)
Therefore, the left side of the inequality we want to prove can be reduced:
1 +
2
1
+
3
1
+ .....+
n
1
> 2(
2
–
1
) + 2(
3
–
2
) + ..... + 2(
n
–
1 n ?
+ 2 (
1 n ?
–
n
)
Since the right side of this latter inequality is exactly equal to 2 (
1 n ?
– n ), the original inequality is valid.
Ex. Prove that for every positive integer n the following inequality holds true:
4
1
) 1 n 2 (
1
.....
25
1
9
1
2
?
?
? ? ?
Read More