Bellman-Ford Algorithm Notes | EduRev

Algorithms

Computer Science Engineering (CSE) : Bellman-Ford Algorithm Notes | EduRev

The document Bellman-Ford Algorithm Notes | EduRev is a part of the Computer Science Engineering (CSE) Course Algorithms.
All you need of Computer Science Engineering (CSE) at this link: Computer Science Engineering (CSE)

Introduction

Given a graph and a source vertex src in graph, find shortest paths from src to all vertices in the given graph. The graph may contain negative weight edges.
We have discussed Dijkstra’s algorithm for this problem. Dijkstra’s algorithm is a Greedy algorithm and time complexity is O(VLogV) (with the use of Fibonacci heap). Dijkstra doesn’t work for Graphs with negative weight edges, Bellman-Ford works for such graphs. Bellman-Ford is also simpler than Dijkstra and suites well for distributed systems. But time complexity of Bellman-Ford is O(VE), which is more than Dijkstra.

Algorithm  

Following are the detailed steps.
Input: Graph and a source vertex src
Output: Shortest distance to all vertices from src. If there is a negative weight cycle, then shortest distances are not calculated, negative weight cycle is reported.

  1. This step initializes distances from the source to all vertices as infinite and distance to the source itself as 0. Create an array dist[] of size |V| with all values as infinite except dist[src] where src is source vertex.
  2. This step calculates shortest distances. Do following |V|-1 times where |V| is the number of vertices in given graph.
    …..a) Do following for each edge u-v
    ………………If dist[v] > dist[u] + weight of edge uv, then update dist[v]
    ………………….dist[v] = dist[u] + weight of edge uv
  3. This step reports if there is a negative weight cycle in graph. Do following for each edge u-v
    ……If dist[v] > dist[u] + weight of edge uv, then “Graph contains negative weight cycle”
    The idea of step 3 is, step 2 guarantees the shortest distances if the graph doesn’t contain a negative weight cycle. If we iterate through all edges one more time and get a shorter path for any vertex, then there is a negative weight cycle
    How does this work? Like other Dynamic Programming Problems, the algorithm calculates shortest paths in a bottom-up manner. It first calculates the shortest distances which have at-most one edge in the path. Then, it calculates the shortest paths with at-most 2 edges, and so on. After the i-th iteration of the outer loop, the shortest paths with at most i edges are calculated. There can be maximum |V| – 1 edges in any simple path, that is why the outer loop runs |v| – 1 times. The idea is, assuming that there is no negative weight cycle, if we have calculated shortest paths with at most i edges, then an iteration over all edges guarantees to give shortest path with at-most (i+1) edges.

Example:
Let us understand the algorithm with following example graph. The images are taken from this source.
Let the given source vertex be 0. Initialize all distances as infinite, except the distance to the source itself. Total number of vertices in the graph is 5, so all edges must be processed 4 times.
Bellman-Ford Algorithm Notes | EduRevLet all edges are processed in the following order: (B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D). We get the following distances when all edges are processed the first time. The first row shows initial distances. The second row shows distances when edges (B, E), (D, B), (B, D) and (A, B) are processed. The third row shows distances when (A, C) is processed. The fourth row shows when (D, C), (B, C) and (E, D) are processed.
Bellman-Ford Algorithm Notes | EduRevThe first iteration guarantees to give all shortest paths which are at most 1 edge long. We get the following distances when all edges are processed second time (The last row shows final values).
Bellman-Ford Algorithm Notes | EduRevThe second iteration guarantees to give all shortest paths which are at most 2 edges long.The algorithm processes all edges 2 more times. The distances are minimized after the second iteration, so third and fourth iterations don’t update the distances.

Implementation

  • C++
    Bellman-Ford Algorithm Notes | EduRev
    Bellman-Ford Algorithm Notes | EduRev
    Bellman-Ford Algorithm Notes | EduRev
    }
  • Java
    Bellman-Ford Algorithm Notes | EduRev
    Bellman-Ford Algorithm Notes | EduRev
    Bellman-Ford Algorithm Notes | EduRev
  • Python3
    Bellman-Ford Algorithm Notes | EduRev
    Bellman-Ford Algorithm Notes | EduRev
  • C#
    Bellman-Ford Algorithm Notes | EduRev
    Bellman-Ford Algorithm Notes | EduRev
    Bellman-Ford Algorithm Notes | EduRev

Output:
Bellman-Ford Algorithm Notes | EduRev

Notes:

  • Negative weights are found in various applications of graphs. For example, instead of paying cost for a path, we may get some advantage if we follow the path.
  • Bellman-Ford works better (better than Dijkstra’s) for distributed systems. Unlike Dijkstra’s where we need to find the minimum value of all vertices, in Bellman-Ford, edges are considered one by one.                                                                  
  • Bellman-Ford does not work with undirected graph with negative edges as it will declared as negative cycle.
Offer running on EduRev: Apply code STAYHOME200 to get INR 200 off on our premium plan EduRev Infinity!

Related Searches

practice quizzes

,

Free

,

past year papers

,

Bellman-Ford Algorithm Notes | EduRev

,

Important questions

,

video lectures

,

Sample Paper

,

pdf

,

Bellman-Ford Algorithm Notes | EduRev

,

Previous Year Questions with Solutions

,

Viva Questions

,

Exam

,

Semester Notes

,

Objective type Questions

,

mock tests for examination

,

study material

,

ppt

,

Extra Questions

,

MCQs

,

shortcuts and tricks

,

Summary

,

Bellman-Ford Algorithm Notes | EduRev

;