CBSE Mathematics Paper 2007 (Class 10, CBSE) Class 10 Notes | EduRev

Class 10 : CBSE Mathematics Paper 2007 (Class 10, CBSE) Class 10 Notes | EduRev

 Page 1


1 P.T.O. 30/2/1
MATHEMATICS
xf.kr xf.kr xf.kr xf.kr xf.kr
Time allowed : 3 hours Maximum Marks: 80
fu/kkZfjr le; % 3 ?k.Vs vf/kdre vad % 80
General Instuctions :
(i) All questions are compulsory.
(ii) The question paper consists of 25 questions divided into three sections —A, B and
C. Section A contains 7 questions of 2 marks each, Section B is of 12 questions of
3 marks each and Section C is of 6 questions of 5 marks each.
(iii) There is no overall choice. However, an internal choice has been provided in two
questions of two marks each, two questions of three marks each and two questions
of five marks each.
(iv) In question on construction, the drawing should be neat and exactly as per the given
measurements.
(v) Use of calculators is not permitted. However , you may ask for Mathematical tables.
lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k %
(i) lHkh iz'u vfuok;Z gSaA
Roll No.
Series RKM/2
Code  No.
30/2/1
Please check that this question paper contains 11 printed pages.
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the condidate.
Please check that this question paper contains 25 questions.
Please write down the serial number of the question before attempting it.
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa eqfnzr i`"B 11 gSaA
iz'u&i=k esa nkfgus gkFk dh vksj fn, x, dksM uEcj dks Nk=k mÙkj&iqfLrdk ds eq[k&i`"B ij fy[ksaA
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa 25 iz'u gSaA
Ñi;k iz'u dk mÙkj fy[kuk 'kq: djus ls igys] iz'u dk Øekad vo'; fy[ksaA
dksM ua- dksM ua- dksM ua- dksM ua- dksM ua-
jksy ua-
Page 2


1 P.T.O. 30/2/1
MATHEMATICS
xf.kr xf.kr xf.kr xf.kr xf.kr
Time allowed : 3 hours Maximum Marks: 80
fu/kkZfjr le; % 3 ?k.Vs vf/kdre vad % 80
General Instuctions :
(i) All questions are compulsory.
(ii) The question paper consists of 25 questions divided into three sections —A, B and
C. Section A contains 7 questions of 2 marks each, Section B is of 12 questions of
3 marks each and Section C is of 6 questions of 5 marks each.
(iii) There is no overall choice. However, an internal choice has been provided in two
questions of two marks each, two questions of three marks each and two questions
of five marks each.
(iv) In question on construction, the drawing should be neat and exactly as per the given
measurements.
(v) Use of calculators is not permitted. However , you may ask for Mathematical tables.
lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k %
(i) lHkh iz'u vfuok;Z gSaA
Roll No.
Series RKM/2
Code  No.
30/2/1
Please check that this question paper contains 11 printed pages.
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the condidate.
Please check that this question paper contains 25 questions.
Please write down the serial number of the question before attempting it.
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa eqfnzr i`"B 11 gSaA
iz'u&i=k esa nkfgus gkFk dh vksj fn, x, dksM uEcj dks Nk=k mÙkj&iqfLrdk ds eq[k&i`"B ij fy[ksaA
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa 25 iz'u gSaA
Ñi;k iz'u dk mÙkj fy[kuk 'kq: djus ls igys] iz'u dk Øekad vo'; fy[ksaA
dksM ua- dksM ua- dksM ua- dksM ua- dksM ua-
jksy ua-
2 30/2/1
(ii) bu iz'u&i=k esa 25 25 25 25 25 iz'u gSa tks rhu [k.Mksa — v] c vkSj l esa c¡Vs gq, gSaA [k.M v esa nks&nks nks&nks nks&nks nks&nks nks&nks
vad okys 7 7 7 7 7 iz'u] [k.M c esa rhu&rhu rhu&rhu rhu&rhu rhu&rhu rhu&rhu vad okys 12 12 12 12 12 iz'u rFkk [k.M l esa ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p vad okys
6 6 6 6 6 iz'u 'kkfey gSaA
(iii) iz'u&i=k esa dksbZ lexz O;kid fodYi ugha gSA fQj Hkh nks&nks vadksa okys nks iz'uksa] rhu&rhu
vadksa okys nks iz'uksa rFkk ik¡p&ik¡p vadksa okys nks iz'uksa esa vkarfjd fodYi fn, x, gSaA
(iv) jpuk okys iz'u esa vkjs[ku LoPN gks vkSj fn, x, ekiu ds loZFkk vuq:i gksA
(v) dSydqysVj ds iz;ksx dh vuqefr ugha gSA ysfdu ;fn vko';drk gks rks vki xf.krh;
lkjf.k;ksa dh ek¡x dj ldrs gSaA
SECTION   A
[k.M v [k.M v [k.M v [k.M v [k.M v
Questions number 1 to 7 carry 2 marks each.
iz'u la[;k 1 ls 7 rd izR;sd iz'u ds 2 vad gSaA
1. Find the GCD of the following polynomials :
12x
4
 + 324x ;    36x
3
 + 90x
2
 — 54x
fuEu cgqinksa dk e-l- (GCD) Kkr dhft, %
12x
4
 + 324x ;    36x
3
 + 90x
2
 — 54x
2. Solve for  x  and  y :
                   OR
Solve for x  and  y :
31x + 29y = 33,     29x + 31y = 27
x rFkk y ds fy, gy dhft, %
         vFkok         vFkok         vFkok         vFkok         vFkok
x rFkk y ds fy, gy dhft, %
31x + 29y = 33,     29x + 31y = 27
3. Find the sum of all three digit whole numbers which are multiples of  7.
lHkh rhu vadh; iw.kZ la[;kvksa dk ;ksxQy Kkr dhft, tks 7 ds xq.kt gSaA
Page 3


1 P.T.O. 30/2/1
MATHEMATICS
xf.kr xf.kr xf.kr xf.kr xf.kr
Time allowed : 3 hours Maximum Marks: 80
fu/kkZfjr le; % 3 ?k.Vs vf/kdre vad % 80
General Instuctions :
(i) All questions are compulsory.
(ii) The question paper consists of 25 questions divided into three sections —A, B and
C. Section A contains 7 questions of 2 marks each, Section B is of 12 questions of
3 marks each and Section C is of 6 questions of 5 marks each.
(iii) There is no overall choice. However, an internal choice has been provided in two
questions of two marks each, two questions of three marks each and two questions
of five marks each.
(iv) In question on construction, the drawing should be neat and exactly as per the given
measurements.
(v) Use of calculators is not permitted. However , you may ask for Mathematical tables.
lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k %
(i) lHkh iz'u vfuok;Z gSaA
Roll No.
Series RKM/2
Code  No.
30/2/1
Please check that this question paper contains 11 printed pages.
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the condidate.
Please check that this question paper contains 25 questions.
Please write down the serial number of the question before attempting it.
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa eqfnzr i`"B 11 gSaA
iz'u&i=k esa nkfgus gkFk dh vksj fn, x, dksM uEcj dks Nk=k mÙkj&iqfLrdk ds eq[k&i`"B ij fy[ksaA
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa 25 iz'u gSaA
Ñi;k iz'u dk mÙkj fy[kuk 'kq: djus ls igys] iz'u dk Øekad vo'; fy[ksaA
dksM ua- dksM ua- dksM ua- dksM ua- dksM ua-
jksy ua-
2 30/2/1
(ii) bu iz'u&i=k esa 25 25 25 25 25 iz'u gSa tks rhu [k.Mksa — v] c vkSj l esa c¡Vs gq, gSaA [k.M v esa nks&nks nks&nks nks&nks nks&nks nks&nks
vad okys 7 7 7 7 7 iz'u] [k.M c esa rhu&rhu rhu&rhu rhu&rhu rhu&rhu rhu&rhu vad okys 12 12 12 12 12 iz'u rFkk [k.M l esa ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p vad okys
6 6 6 6 6 iz'u 'kkfey gSaA
(iii) iz'u&i=k esa dksbZ lexz O;kid fodYi ugha gSA fQj Hkh nks&nks vadksa okys nks iz'uksa] rhu&rhu
vadksa okys nks iz'uksa rFkk ik¡p&ik¡p vadksa okys nks iz'uksa esa vkarfjd fodYi fn, x, gSaA
(iv) jpuk okys iz'u esa vkjs[ku LoPN gks vkSj fn, x, ekiu ds loZFkk vuq:i gksA
(v) dSydqysVj ds iz;ksx dh vuqefr ugha gSA ysfdu ;fn vko';drk gks rks vki xf.krh;
lkjf.k;ksa dh ek¡x dj ldrs gSaA
SECTION   A
[k.M v [k.M v [k.M v [k.M v [k.M v
Questions number 1 to 7 carry 2 marks each.
iz'u la[;k 1 ls 7 rd izR;sd iz'u ds 2 vad gSaA
1. Find the GCD of the following polynomials :
12x
4
 + 324x ;    36x
3
 + 90x
2
 — 54x
fuEu cgqinksa dk e-l- (GCD) Kkr dhft, %
12x
4
 + 324x ;    36x
3
 + 90x
2
 — 54x
2. Solve for  x  and  y :
                   OR
Solve for x  and  y :
31x + 29y = 33,     29x + 31y = 27
x rFkk y ds fy, gy dhft, %
         vFkok         vFkok         vFkok         vFkok         vFkok
x rFkk y ds fy, gy dhft, %
31x + 29y = 33,     29x + 31y = 27
3. Find the sum of all three digit whole numbers which are multiples of  7.
lHkh rhu vadh; iw.kZ la[;kvksa dk ;ksxQy Kkr dhft, tks 7 ds xq.kt gSaA
3 P.T.O. 30/2/1
4. In Figure 1,   PQ | | AB   and   PR | | AC.   Prove that   QR | | BC.
                                              OR
In  Figure   2,  incircle  of  ABC  touches  its   sides  AB,   BC   and  CA  at  D,   E   and  F
respectively. If AB = AC, prove that BE = EC.
vkÑfr 1 esa] PQ | | AB rFkk PR | | AC fl) dhft, fd QR | | BC.
                          vFkok                          vFkok                          vFkok                          vFkok                          vFkok
vkÑfr 2 esa]  ABC dk vUr%o`Ùk Hkqtkvksa AB,   BC rFkk CA dks Øe'k% fcUnqvksa D,   E rFkk
F ij Li'kZ djrk gSA ;fn AB = AC gS] rks fl) dhft, fd BE = EC.
Page 4


1 P.T.O. 30/2/1
MATHEMATICS
xf.kr xf.kr xf.kr xf.kr xf.kr
Time allowed : 3 hours Maximum Marks: 80
fu/kkZfjr le; % 3 ?k.Vs vf/kdre vad % 80
General Instuctions :
(i) All questions are compulsory.
(ii) The question paper consists of 25 questions divided into three sections —A, B and
C. Section A contains 7 questions of 2 marks each, Section B is of 12 questions of
3 marks each and Section C is of 6 questions of 5 marks each.
(iii) There is no overall choice. However, an internal choice has been provided in two
questions of two marks each, two questions of three marks each and two questions
of five marks each.
(iv) In question on construction, the drawing should be neat and exactly as per the given
measurements.
(v) Use of calculators is not permitted. However , you may ask for Mathematical tables.
lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k %
(i) lHkh iz'u vfuok;Z gSaA
Roll No.
Series RKM/2
Code  No.
30/2/1
Please check that this question paper contains 11 printed pages.
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the condidate.
Please check that this question paper contains 25 questions.
Please write down the serial number of the question before attempting it.
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa eqfnzr i`"B 11 gSaA
iz'u&i=k esa nkfgus gkFk dh vksj fn, x, dksM uEcj dks Nk=k mÙkj&iqfLrdk ds eq[k&i`"B ij fy[ksaA
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa 25 iz'u gSaA
Ñi;k iz'u dk mÙkj fy[kuk 'kq: djus ls igys] iz'u dk Øekad vo'; fy[ksaA
dksM ua- dksM ua- dksM ua- dksM ua- dksM ua-
jksy ua-
2 30/2/1
(ii) bu iz'u&i=k esa 25 25 25 25 25 iz'u gSa tks rhu [k.Mksa — v] c vkSj l esa c¡Vs gq, gSaA [k.M v esa nks&nks nks&nks nks&nks nks&nks nks&nks
vad okys 7 7 7 7 7 iz'u] [k.M c esa rhu&rhu rhu&rhu rhu&rhu rhu&rhu rhu&rhu vad okys 12 12 12 12 12 iz'u rFkk [k.M l esa ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p vad okys
6 6 6 6 6 iz'u 'kkfey gSaA
(iii) iz'u&i=k esa dksbZ lexz O;kid fodYi ugha gSA fQj Hkh nks&nks vadksa okys nks iz'uksa] rhu&rhu
vadksa okys nks iz'uksa rFkk ik¡p&ik¡p vadksa okys nks iz'uksa esa vkarfjd fodYi fn, x, gSaA
(iv) jpuk okys iz'u esa vkjs[ku LoPN gks vkSj fn, x, ekiu ds loZFkk vuq:i gksA
(v) dSydqysVj ds iz;ksx dh vuqefr ugha gSA ysfdu ;fn vko';drk gks rks vki xf.krh;
lkjf.k;ksa dh ek¡x dj ldrs gSaA
SECTION   A
[k.M v [k.M v [k.M v [k.M v [k.M v
Questions number 1 to 7 carry 2 marks each.
iz'u la[;k 1 ls 7 rd izR;sd iz'u ds 2 vad gSaA
1. Find the GCD of the following polynomials :
12x
4
 + 324x ;    36x
3
 + 90x
2
 — 54x
fuEu cgqinksa dk e-l- (GCD) Kkr dhft, %
12x
4
 + 324x ;    36x
3
 + 90x
2
 — 54x
2. Solve for  x  and  y :
                   OR
Solve for x  and  y :
31x + 29y = 33,     29x + 31y = 27
x rFkk y ds fy, gy dhft, %
         vFkok         vFkok         vFkok         vFkok         vFkok
x rFkk y ds fy, gy dhft, %
31x + 29y = 33,     29x + 31y = 27
3. Find the sum of all three digit whole numbers which are multiples of  7.
lHkh rhu vadh; iw.kZ la[;kvksa dk ;ksxQy Kkr dhft, tks 7 ds xq.kt gSaA
3 P.T.O. 30/2/1
4. In Figure 1,   PQ | | AB   and   PR | | AC.   Prove that   QR | | BC.
                                              OR
In  Figure   2,  incircle  of  ABC  touches  its   sides  AB,   BC   and  CA  at  D,   E   and  F
respectively. If AB = AC, prove that BE = EC.
vkÑfr 1 esa] PQ | | AB rFkk PR | | AC fl) dhft, fd QR | | BC.
                          vFkok                          vFkok                          vFkok                          vFkok                          vFkok
vkÑfr 2 esa]  ABC dk vUr%o`Ùk Hkqtkvksa AB,   BC rFkk CA dks Øe'k% fcUnqvksa D,   E rFkk
F ij Li'kZ djrk gSA ;fn AB = AC gS] rks fl) dhft, fd BE = EC.
4 30/2/1
5. If the mean of the following frequency distribution is 49, find the missing frequency p :
Class Frequency
0 - 20 2
20 - 40 6
40 - 60 p
60 - 80 5
80 - 100 2
;fn fuEu ckjackjrk caVu dk ek/; 49 gS] rks yqIr ckjackjrk p Kkr dhft, %
oxZ ckjEckjrk
0 - 20 2
20 - 40 6
40 - 60 p
60 - 80 5
80 - 100 2
6. A wrist-watch is available for Rs. 1,000 cash or Rs. 500 as cash down payment followed
by three equal monthly instalments of Rs. 180. Calculate the rate of interest charged
under the instalment plan.
,d gkFk&?kM+h dk udn ewY; 1]000 #- vFkok og 500 #- udn Hkqxrku ds lkFk 180 #- dh rhu
leku ekfld fdLrksa esa Hkh miyC/k gSA fdLr ;kstuk ds vUrxZr C;kt dh nj ifjdfyr
dhft,A
Page 5


1 P.T.O. 30/2/1
MATHEMATICS
xf.kr xf.kr xf.kr xf.kr xf.kr
Time allowed : 3 hours Maximum Marks: 80
fu/kkZfjr le; % 3 ?k.Vs vf/kdre vad % 80
General Instuctions :
(i) All questions are compulsory.
(ii) The question paper consists of 25 questions divided into three sections —A, B and
C. Section A contains 7 questions of 2 marks each, Section B is of 12 questions of
3 marks each and Section C is of 6 questions of 5 marks each.
(iii) There is no overall choice. However, an internal choice has been provided in two
questions of two marks each, two questions of three marks each and two questions
of five marks each.
(iv) In question on construction, the drawing should be neat and exactly as per the given
measurements.
(v) Use of calculators is not permitted. However , you may ask for Mathematical tables.
lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k %
(i) lHkh iz'u vfuok;Z gSaA
Roll No.
Series RKM/2
Code  No.
30/2/1
Please check that this question paper contains 11 printed pages.
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the condidate.
Please check that this question paper contains 25 questions.
Please write down the serial number of the question before attempting it.
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa eqfnzr i`"B 11 gSaA
iz'u&i=k esa nkfgus gkFk dh vksj fn, x, dksM uEcj dks Nk=k mÙkj&iqfLrdk ds eq[k&i`"B ij fy[ksaA
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa 25 iz'u gSaA
Ñi;k iz'u dk mÙkj fy[kuk 'kq: djus ls igys] iz'u dk Øekad vo'; fy[ksaA
dksM ua- dksM ua- dksM ua- dksM ua- dksM ua-
jksy ua-
2 30/2/1
(ii) bu iz'u&i=k esa 25 25 25 25 25 iz'u gSa tks rhu [k.Mksa — v] c vkSj l esa c¡Vs gq, gSaA [k.M v esa nks&nks nks&nks nks&nks nks&nks nks&nks
vad okys 7 7 7 7 7 iz'u] [k.M c esa rhu&rhu rhu&rhu rhu&rhu rhu&rhu rhu&rhu vad okys 12 12 12 12 12 iz'u rFkk [k.M l esa ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p vad okys
6 6 6 6 6 iz'u 'kkfey gSaA
(iii) iz'u&i=k esa dksbZ lexz O;kid fodYi ugha gSA fQj Hkh nks&nks vadksa okys nks iz'uksa] rhu&rhu
vadksa okys nks iz'uksa rFkk ik¡p&ik¡p vadksa okys nks iz'uksa esa vkarfjd fodYi fn, x, gSaA
(iv) jpuk okys iz'u esa vkjs[ku LoPN gks vkSj fn, x, ekiu ds loZFkk vuq:i gksA
(v) dSydqysVj ds iz;ksx dh vuqefr ugha gSA ysfdu ;fn vko';drk gks rks vki xf.krh;
lkjf.k;ksa dh ek¡x dj ldrs gSaA
SECTION   A
[k.M v [k.M v [k.M v [k.M v [k.M v
Questions number 1 to 7 carry 2 marks each.
iz'u la[;k 1 ls 7 rd izR;sd iz'u ds 2 vad gSaA
1. Find the GCD of the following polynomials :
12x
4
 + 324x ;    36x
3
 + 90x
2
 — 54x
fuEu cgqinksa dk e-l- (GCD) Kkr dhft, %
12x
4
 + 324x ;    36x
3
 + 90x
2
 — 54x
2. Solve for  x  and  y :
                   OR
Solve for x  and  y :
31x + 29y = 33,     29x + 31y = 27
x rFkk y ds fy, gy dhft, %
         vFkok         vFkok         vFkok         vFkok         vFkok
x rFkk y ds fy, gy dhft, %
31x + 29y = 33,     29x + 31y = 27
3. Find the sum of all three digit whole numbers which are multiples of  7.
lHkh rhu vadh; iw.kZ la[;kvksa dk ;ksxQy Kkr dhft, tks 7 ds xq.kt gSaA
3 P.T.O. 30/2/1
4. In Figure 1,   PQ | | AB   and   PR | | AC.   Prove that   QR | | BC.
                                              OR
In  Figure   2,  incircle  of  ABC  touches  its   sides  AB,   BC   and  CA  at  D,   E   and  F
respectively. If AB = AC, prove that BE = EC.
vkÑfr 1 esa] PQ | | AB rFkk PR | | AC fl) dhft, fd QR | | BC.
                          vFkok                          vFkok                          vFkok                          vFkok                          vFkok
vkÑfr 2 esa]  ABC dk vUr%o`Ùk Hkqtkvksa AB,   BC rFkk CA dks Øe'k% fcUnqvksa D,   E rFkk
F ij Li'kZ djrk gSA ;fn AB = AC gS] rks fl) dhft, fd BE = EC.
4 30/2/1
5. If the mean of the following frequency distribution is 49, find the missing frequency p :
Class Frequency
0 - 20 2
20 - 40 6
40 - 60 p
60 - 80 5
80 - 100 2
;fn fuEu ckjackjrk caVu dk ek/; 49 gS] rks yqIr ckjackjrk p Kkr dhft, %
oxZ ckjEckjrk
0 - 20 2
20 - 40 6
40 - 60 p
60 - 80 5
80 - 100 2
6. A wrist-watch is available for Rs. 1,000 cash or Rs. 500 as cash down payment followed
by three equal monthly instalments of Rs. 180. Calculate the rate of interest charged
under the instalment plan.
,d gkFk&?kM+h dk udn ewY; 1]000 #- vFkok og 500 #- udn Hkqxrku ds lkFk 180 #- dh rhu
leku ekfld fdLrksa esa Hkh miyC/k gSA fdLr ;kstuk ds vUrxZr C;kt dh nj ifjdfyr
dhft,A
5 P.T.O. 30/2/1
7. An unbiased die is tossed once. Find the probability of getting
(i) a multiple of  2 or 3.
(ii) a prime number greater than 2.
,d vufHkur ik¡lk ,d ckj mNkyk x;kA fuEu ds vkus dh izkf;drk Kkr dhft, %
(i) 2 vFkok 3 dk xq.ktA
(ii) 2 ls cM+h vHkkT; la[;kA
SECTION B
[k.M c [k.M c [k.M c [k.M c [k.M c
Questions number 8 to 19 carry 3 marks each.
iz'u la[;k 8 ls 19 rd izR;sd iz'u ds 3 vad gSaA
8. Solve the following system of equations graphically :
2x + y = 8;    x + 1 = 2y
fuEu lehdj.k fudk; dks xzkQ+ dh lgk;rk ls gy dhft, %
2x + y = 8;    x + 1 = 2y
9. Simplify the following rational expression in the lowest terms :
fuEu ifjes; O;atd dks mlds U;wure :i esa izdV dhft, %
10. If the sum to first n terms of an A.P. is given by S
n
 = n (n + 1), find the 20
th
 term of
the A.P .
;fn fdlh lekUrj Js<+h ds izFke n inksa dk ;ksxQy S
n
 = n (n + 1) }kjk ifjHkkf"kr gS] rks lekUrj
Js<+h dk 20ok¡ in Kkr dhft,A
Read More
Offer running on EduRev: Apply code STAYHOME200 to get INR 200 off on our premium plan EduRev Infinity!

Complete Syllabus of Class 10

Content Category

Related Searches

CBSE Mathematics Paper 2007 (Class 10

,

Previous Year Questions with Solutions

,

Important questions

,

practice quizzes

,

CBSE Mathematics Paper 2007 (Class 10

,

mock tests for examination

,

Summary

,

video lectures

,

ppt

,

shortcuts and tricks

,

Objective type Questions

,

study material

,

pdf

,

CBSE Mathematics Paper 2007 (Class 10

,

CBSE) Class 10 Notes | EduRev

,

Extra Questions

,

Semester Notes

,

MCQs

,

past year papers

,

CBSE) Class 10 Notes | EduRev

,

CBSE) Class 10 Notes | EduRev

,

Exam

,

Viva Questions

,

Free

,

Sample Paper

;