JEE Exam  >  JEE Notes  >  Mathematics (Maths) Class 12  >  CBSE Past Year Paper Session (2014) Solutions, Math Class 12

CBSE Past Year Paper Session (2014) Solutions, Math Class 12 | Mathematics (Maths) Class 12 - JEE PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
CBSE Board 
Class XII Mathematics 
Board Paper 2014 Solution 
Delhi   
      
SECTION – A 
1. Given that
2
AA ? . 
  We need to find the value of 
? ?
3
7A I A , where I is the identity matrix. ?? 
 Thus, 
 
? ? ? ?
? ? ? ?
? ? ? ?
? ?
? ?
? ?
3
3 2 2 3
3
3 2 2 3 2 2 2
3
2
3
3
3
7A I A 7A I 3I A 3IA A
7A I A 7A I 3A 3A A A I I,I A A,IA A
7A I A 7A I 3A 3A A A A
7A I A 7A I 3A 3A A
7A I A 7A I 7A
7A I A I
? ? ? ? ? ? ?
?? ? ? ? ? ? ? ? ? ? ? ? ?
??
?? ? ? ? ? ? ? ? ? ?
??
? ? ? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?
 
 
2. Given that 
x y z 1 4
2x y w 0 5
?? ? ? ? ?
?
? ? ? ?
?
? ? ? ?
 
 We need to find the value of x + y. 
 
?? ? ? ? ?
?
? ? ? ?
?
? ? ? ?
?
? ? ?
??
ij ij
x y z 1 4
2x y w 0 5
Two matrices A and B are equal to each other, if they have the same dimensions
and the same elements a b , for i = 1,2,...,n and j = 1,2,...,m.
x y 1...(1)
2x y 0...(2)
Equa ?
? ? ?
??
tion (2) (1) is x = 1
Substituting the value of x = 1 in equation (1), we have
1 y 1
y2
Therefore, x + y = 1 + 2 = 3
 
 
 
Page 2


  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
CBSE Board 
Class XII Mathematics 
Board Paper 2014 Solution 
Delhi   
      
SECTION – A 
1. Given that
2
AA ? . 
  We need to find the value of 
? ?
3
7A I A , where I is the identity matrix. ?? 
 Thus, 
 
? ? ? ?
? ? ? ?
? ? ? ?
? ?
? ?
? ?
3
3 2 2 3
3
3 2 2 3 2 2 2
3
2
3
3
3
7A I A 7A I 3I A 3IA A
7A I A 7A I 3A 3A A A I I,I A A,IA A
7A I A 7A I 3A 3A A A A
7A I A 7A I 3A 3A A
7A I A 7A I 7A
7A I A I
? ? ? ? ? ? ?
?? ? ? ? ? ? ? ? ? ? ? ? ?
??
?? ? ? ? ? ? ? ? ? ?
??
? ? ? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?
 
 
2. Given that 
x y z 1 4
2x y w 0 5
?? ? ? ? ?
?
? ? ? ?
?
? ? ? ?
 
 We need to find the value of x + y. 
 
?? ? ? ? ?
?
? ? ? ?
?
? ? ? ?
?
? ? ?
??
ij ij
x y z 1 4
2x y w 0 5
Two matrices A and B are equal to each other, if they have the same dimensions
and the same elements a b , for i = 1,2,...,n and j = 1,2,...,m.
x y 1...(1)
2x y 0...(2)
Equa ?
? ? ?
??
tion (2) (1) is x = 1
Substituting the value of x = 1 in equation (1), we have
1 y 1
y2
Therefore, x + y = 1 + 2 = 3
 
 
 
  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
3. 
11
Given that tan x tan y and xy<1.
4
??
?
?? 
  
? ?
11
1
1
We need to find the value of x+y+xy.
tan x tan y
4
xy
tan xy 1
1 xy 4
xy
tan tan tan
1 xy 4
xy
1
1 xy
x y 1 xy
x y xy 1
??
?
?
?
??
?? ??
? ? ?
??
?
??
?? ???? ??
??
?? ?? ??
?
?? ?? ??
?
??
?
? ? ? ?
? ? ? ?
 
 
4.  Given that 
3x 7 8 7
2 4 6 4
?
?
. 
 We need to find the value of x 
 
? ?
3x 7 8 7
2 4 6 4
12x 14 32 42
12x 14 10
12x 10 14
12x 24
x2
?
?
? ? ? ? ?
? ? ? ?
? ? ? ?
? ? ?
? ? ?
 
 
 
 
 
 
 
 
 
 
Page 3


  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
CBSE Board 
Class XII Mathematics 
Board Paper 2014 Solution 
Delhi   
      
SECTION – A 
1. Given that
2
AA ? . 
  We need to find the value of 
? ?
3
7A I A , where I is the identity matrix. ?? 
 Thus, 
 
? ? ? ?
? ? ? ?
? ? ? ?
? ?
? ?
? ?
3
3 2 2 3
3
3 2 2 3 2 2 2
3
2
3
3
3
7A I A 7A I 3I A 3IA A
7A I A 7A I 3A 3A A A I I,I A A,IA A
7A I A 7A I 3A 3A A A A
7A I A 7A I 3A 3A A
7A I A 7A I 7A
7A I A I
? ? ? ? ? ? ?
?? ? ? ? ? ? ? ? ? ? ? ? ?
??
?? ? ? ? ? ? ? ? ? ?
??
? ? ? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?
 
 
2. Given that 
x y z 1 4
2x y w 0 5
?? ? ? ? ?
?
? ? ? ?
?
? ? ? ?
 
 We need to find the value of x + y. 
 
?? ? ? ? ?
?
? ? ? ?
?
? ? ? ?
?
? ? ?
??
ij ij
x y z 1 4
2x y w 0 5
Two matrices A and B are equal to each other, if they have the same dimensions
and the same elements a b , for i = 1,2,...,n and j = 1,2,...,m.
x y 1...(1)
2x y 0...(2)
Equa ?
? ? ?
??
tion (2) (1) is x = 1
Substituting the value of x = 1 in equation (1), we have
1 y 1
y2
Therefore, x + y = 1 + 2 = 3
 
 
 
  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
3. 
11
Given that tan x tan y and xy<1.
4
??
?
?? 
  
? ?
11
1
1
We need to find the value of x+y+xy.
tan x tan y
4
xy
tan xy 1
1 xy 4
xy
tan tan tan
1 xy 4
xy
1
1 xy
x y 1 xy
x y xy 1
??
?
?
?
??
?? ??
? ? ?
??
?
??
?? ???? ??
??
?? ?? ??
?
?? ?? ??
?
??
?
? ? ? ?
? ? ? ?
 
 
4.  Given that 
3x 7 8 7
2 4 6 4
?
?
. 
 We need to find the value of x 
 
? ?
3x 7 8 7
2 4 6 4
12x 14 32 42
12x 14 10
12x 10 14
12x 24
x2
?
?
? ? ? ? ?
? ? ? ?
? ? ? ?
? ? ?
? ? ?
 
 
 
 
 
 
 
 
 
 
  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
5. Since differentiation operation is the inverse operation of integration, we have 
? ? sin ? ? f x x x 
 Let ? ?
0
sin ?
?
x
f x t tdt 
 Let us do this by integration by parts. 
 Therefore assume u = t; du = dt 
 
sin
cos
?
??
??
tdt dv
tv
 
 
? ? ? ? ? ?
? ?
? ? ? ?
0
0
Therefore, 
= t cos cos
cos sin
Differentiating the above function with respect to x,
f x sin cos cos sin
?? ? ? ?
??
? ? ? ?
??? ? ? ? ? ? ?
??
?
x
x
f x t t dt
f x x x x C
x x x x x x
 
 
6. Since the vectors are parallel, we have 
  
? ?
ab
3i 2j 9k i 2pj 3k
3i 2j 9k i 2 pj 3 k
Comparing the respective coefficients, we have
3;
2 p 2
2 3 p 2
1
p
3
??
? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ?
? ? ?
? ? ? ? ?
?
??
 
 
7. ? ? The set of natural numbers, N = 1, 2, 3, 4, 5, 6.... 
 
? ? ? ?
? ? ? ? ? ? ? ?
? ?
? ?
The relation is given as 
R = x, y : 2 8
Thus, R = 6, 1 , 4, 2 , 2, 3
Domain = 6, 4, 2
Range = 1, 2, 3
?? xy
 
 
 
 
 
Page 4


  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
CBSE Board 
Class XII Mathematics 
Board Paper 2014 Solution 
Delhi   
      
SECTION – A 
1. Given that
2
AA ? . 
  We need to find the value of 
? ?
3
7A I A , where I is the identity matrix. ?? 
 Thus, 
 
? ? ? ?
? ? ? ?
? ? ? ?
? ?
? ?
? ?
3
3 2 2 3
3
3 2 2 3 2 2 2
3
2
3
3
3
7A I A 7A I 3I A 3IA A
7A I A 7A I 3A 3A A A I I,I A A,IA A
7A I A 7A I 3A 3A A A A
7A I A 7A I 3A 3A A
7A I A 7A I 7A
7A I A I
? ? ? ? ? ? ?
?? ? ? ? ? ? ? ? ? ? ? ? ?
??
?? ? ? ? ? ? ? ? ? ?
??
? ? ? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?
 
 
2. Given that 
x y z 1 4
2x y w 0 5
?? ? ? ? ?
?
? ? ? ?
?
? ? ? ?
 
 We need to find the value of x + y. 
 
?? ? ? ? ?
?
? ? ? ?
?
? ? ? ?
?
? ? ?
??
ij ij
x y z 1 4
2x y w 0 5
Two matrices A and B are equal to each other, if they have the same dimensions
and the same elements a b , for i = 1,2,...,n and j = 1,2,...,m.
x y 1...(1)
2x y 0...(2)
Equa ?
? ? ?
??
tion (2) (1) is x = 1
Substituting the value of x = 1 in equation (1), we have
1 y 1
y2
Therefore, x + y = 1 + 2 = 3
 
 
 
  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
3. 
11
Given that tan x tan y and xy<1.
4
??
?
?? 
  
? ?
11
1
1
We need to find the value of x+y+xy.
tan x tan y
4
xy
tan xy 1
1 xy 4
xy
tan tan tan
1 xy 4
xy
1
1 xy
x y 1 xy
x y xy 1
??
?
?
?
??
?? ??
? ? ?
??
?
??
?? ???? ??
??
?? ?? ??
?
?? ?? ??
?
??
?
? ? ? ?
? ? ? ?
 
 
4.  Given that 
3x 7 8 7
2 4 6 4
?
?
. 
 We need to find the value of x 
 
? ?
3x 7 8 7
2 4 6 4
12x 14 32 42
12x 14 10
12x 10 14
12x 24
x2
?
?
? ? ? ? ?
? ? ? ?
? ? ? ?
? ? ?
? ? ?
 
 
 
 
 
 
 
 
 
 
  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
5. Since differentiation operation is the inverse operation of integration, we have 
? ? sin ? ? f x x x 
 Let ? ?
0
sin ?
?
x
f x t tdt 
 Let us do this by integration by parts. 
 Therefore assume u = t; du = dt 
 
sin
cos
?
??
??
tdt dv
tv
 
 
? ? ? ? ? ?
? ?
? ? ? ?
0
0
Therefore, 
= t cos cos
cos sin
Differentiating the above function with respect to x,
f x sin cos cos sin
?? ? ? ?
??
? ? ? ?
??? ? ? ? ? ? ?
??
?
x
x
f x t t dt
f x x x x C
x x x x x x
 
 
6. Since the vectors are parallel, we have 
  
? ?
ab
3i 2j 9k i 2pj 3k
3i 2j 9k i 2 pj 3 k
Comparing the respective coefficients, we have
3;
2 p 2
2 3 p 2
1
p
3
??
? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ?
? ? ?
? ? ? ? ?
?
??
 
 
7. ? ? The set of natural numbers, N = 1, 2, 3, 4, 5, 6.... 
 
? ? ? ?
? ? ? ? ? ? ? ?
? ?
? ?
The relation is given as 
R = x, y : 2 8
Thus, R = 6, 1 , 4, 2 , 2, 3
Domain = 6, 4, 2
Range = 1, 2, 3
?? xy
 
 
 
 
 
  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
8.  Given that the cartesian equation of the line as 
 
? ? ? ? ? ?
? ?
3 4 2 6
5 7 4
That is,
3 4 2 3
5 7 4
4
33
5 7 2
? ? ?
??
? ? ? ? ?
??
??
??
? ? ? ?
?
?
x y z
x y z
y
xz
 
 
Any point on the line is of the form:
5 3,7 4,2 3
Thus, the vector equation is of the form:
r , where  is the position vector of any
point on the line and b is the vector parallel to the lin
? ? ? ?
?? a b a
? ? ?
?
? ? ? ? ? ?
? ?
e.
Therefore, the vector equation is
r 5 3 7 4 2 3
r 5 7 2 3 4 3
r 3 4 3 5 7 2
? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
i j k
i j k i j k
i j k i j k
? ? ?
? ? ?
?
 
 
9. 
a
2
0
dx
Given that 
4+x 8
?
?
?
 
a
2
0
-1
0
We need to find the value of a.
dx
Let I= 
4+x 8
1
Thus, I= tan
2 2 8
?
??
?
??
??
?
?
?
a
x
 
1
1
1
1
tan
2 2 8
tan 2
28
tan
24
1
2
2
?
?
?
??
? ? ?
??
??
??
?
?
?
a
a
a
a
a
 
 
 
 
Page 5


  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
CBSE Board 
Class XII Mathematics 
Board Paper 2014 Solution 
Delhi   
      
SECTION – A 
1. Given that
2
AA ? . 
  We need to find the value of 
? ?
3
7A I A , where I is the identity matrix. ?? 
 Thus, 
 
? ? ? ?
? ? ? ?
? ? ? ?
? ?
? ?
? ?
3
3 2 2 3
3
3 2 2 3 2 2 2
3
2
3
3
3
7A I A 7A I 3I A 3IA A
7A I A 7A I 3A 3A A A I I,I A A,IA A
7A I A 7A I 3A 3A A A A
7A I A 7A I 3A 3A A
7A I A 7A I 7A
7A I A I
? ? ? ? ? ? ?
?? ? ? ? ? ? ? ? ? ? ? ? ?
??
?? ? ? ? ? ? ? ? ? ?
??
? ? ? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?
 
 
2. Given that 
x y z 1 4
2x y w 0 5
?? ? ? ? ?
?
? ? ? ?
?
? ? ? ?
 
 We need to find the value of x + y. 
 
?? ? ? ? ?
?
? ? ? ?
?
? ? ? ?
?
? ? ?
??
ij ij
x y z 1 4
2x y w 0 5
Two matrices A and B are equal to each other, if they have the same dimensions
and the same elements a b , for i = 1,2,...,n and j = 1,2,...,m.
x y 1...(1)
2x y 0...(2)
Equa ?
? ? ?
??
tion (2) (1) is x = 1
Substituting the value of x = 1 in equation (1), we have
1 y 1
y2
Therefore, x + y = 1 + 2 = 3
 
 
 
  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
3. 
11
Given that tan x tan y and xy<1.
4
??
?
?? 
  
? ?
11
1
1
We need to find the value of x+y+xy.
tan x tan y
4
xy
tan xy 1
1 xy 4
xy
tan tan tan
1 xy 4
xy
1
1 xy
x y 1 xy
x y xy 1
??
?
?
?
??
?? ??
? ? ?
??
?
??
?? ???? ??
??
?? ?? ??
?
?? ?? ??
?
??
?
? ? ? ?
? ? ? ?
 
 
4.  Given that 
3x 7 8 7
2 4 6 4
?
?
. 
 We need to find the value of x 
 
? ?
3x 7 8 7
2 4 6 4
12x 14 32 42
12x 14 10
12x 10 14
12x 24
x2
?
?
? ? ? ? ?
? ? ? ?
? ? ? ?
? ? ?
? ? ?
 
 
 
 
 
 
 
 
 
 
  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
5. Since differentiation operation is the inverse operation of integration, we have 
? ? sin ? ? f x x x 
 Let ? ?
0
sin ?
?
x
f x t tdt 
 Let us do this by integration by parts. 
 Therefore assume u = t; du = dt 
 
sin
cos
?
??
??
tdt dv
tv
 
 
? ? ? ? ? ?
? ?
? ? ? ?
0
0
Therefore, 
= t cos cos
cos sin
Differentiating the above function with respect to x,
f x sin cos cos sin
?? ? ? ?
??
? ? ? ?
??? ? ? ? ? ? ?
??
?
x
x
f x t t dt
f x x x x C
x x x x x x
 
 
6. Since the vectors are parallel, we have 
  
? ?
ab
3i 2j 9k i 2pj 3k
3i 2j 9k i 2 pj 3 k
Comparing the respective coefficients, we have
3;
2 p 2
2 3 p 2
1
p
3
??
? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ?
? ? ?
? ? ? ? ?
?
??
 
 
7. ? ? The set of natural numbers, N = 1, 2, 3, 4, 5, 6.... 
 
? ? ? ?
? ? ? ? ? ? ? ?
? ?
? ?
The relation is given as 
R = x, y : 2 8
Thus, R = 6, 1 , 4, 2 , 2, 3
Domain = 6, 4, 2
Range = 1, 2, 3
?? xy
 
 
 
 
 
  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
8.  Given that the cartesian equation of the line as 
 
? ? ? ? ? ?
? ?
3 4 2 6
5 7 4
That is,
3 4 2 3
5 7 4
4
33
5 7 2
? ? ?
??
? ? ? ? ?
??
??
??
? ? ? ?
?
?
x y z
x y z
y
xz
 
 
Any point on the line is of the form:
5 3,7 4,2 3
Thus, the vector equation is of the form:
r , where  is the position vector of any
point on the line and b is the vector parallel to the lin
? ? ? ?
?? a b a
? ? ?
?
? ? ? ? ? ?
? ?
e.
Therefore, the vector equation is
r 5 3 7 4 2 3
r 5 7 2 3 4 3
r 3 4 3 5 7 2
? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
i j k
i j k i j k
i j k i j k
? ? ?
? ? ?
?
 
 
9. 
a
2
0
dx
Given that 
4+x 8
?
?
?
 
a
2
0
-1
0
We need to find the value of a.
dx
Let I= 
4+x 8
1
Thus, I= tan
2 2 8
?
??
?
??
??
?
?
?
a
x
 
1
1
1
1
tan
2 2 8
tan 2
28
tan
24
1
2
2
?
?
?
??
? ? ?
??
??
??
?
?
?
a
a
a
a
a
 
 
 
 
  
 
CBSE XII | Mathematics 
Board Paper 2014 – Delhi Set 3 Solution 
 
     
10.  Given that a and b are two perpendicular vectors. 
 
Thus, a b 0
Also given that, a b 13 and a =5.
We need to find the value of b.
??
?? 
 
2
2 2 2
2
22
2
2
2
Consider a b :
a b = a 2 a b b
13 5 2 0 b
169 25 b
b 169 25
b 144
b 12
?
? ? ? ?
? ? ? ?
??
??
?
?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Read More
204 videos|290 docs|139 tests

FAQs on CBSE Past Year Paper Session (2014) Solutions, Math Class 12 - Mathematics (Maths) Class 12 - JEE

1. What is the CBSE Past Year Paper Session?
Ans. The CBSE Past Year Paper Session refers to a study session where students can practice and solve previous year question papers of the Central Board of Secondary Education (CBSE) exams. It helps students in familiarizing themselves with the exam pattern and marking scheme, and also allows them to assess their preparation level.
2. How can solving past year papers help in preparing for the Math Class 12 CBSE exam?
Ans. Solving past year papers can be extremely beneficial in preparing for the Math Class 12 CBSE exam. It gives students an idea about the type of questions asked in the exam, helps them understand the weightage given to different topics, and enables them to practice time management. Additionally, analyzing their performance in these papers can highlight areas of weakness that need more attention.
3. Where can I find the solutions for the CBSE Past Year Paper Session (2014) for Math Class 12?
Ans. You can find the solutions for the CBSE Past Year Paper Session (2014) for Math Class 12 in various sources. You can check online educational platforms, official CBSE websites, or refer to specialized study materials or guidebooks that provide solutions for past year papers. Additionally, you can seek help from your teachers or academic mentors for guidance in finding the solutions.
4. How can solving CBSE past year papers improve my exam performance?
Ans. Solving CBSE past year papers can significantly improve your exam performance in several ways. It helps you in gaining familiarity with the exam pattern, allows you to practice and refine your problem-solving skills, boosts your confidence, and reduces exam anxiety. By solving these papers, you can also identify common mistakes and rectify them, ultimately enhancing your overall understanding of the subject and improving your chances of scoring better in the actual exam.
5. Are the solutions provided for the CBSE Past Year Paper Session (2014) accurate and reliable?
Ans. The accuracy and reliability of the solutions for the CBSE Past Year Paper Session (2014) may vary depending on the source you refer to. It is advisable to cross-verify the solutions with trusted reference materials or consult with subject experts to ensure their correctness. Additionally, you can compare your solutions with those provided by reputable sources to gain further confidence in their accuracy.
204 videos|290 docs|139 tests
Download as PDF

Top Courses for JEE

Related Searches

past year papers

,

CBSE Past Year Paper Session (2014) Solutions

,

MCQs

,

shortcuts and tricks

,

CBSE Past Year Paper Session (2014) Solutions

,

Sample Paper

,

Previous Year Questions with Solutions

,

Semester Notes

,

mock tests for examination

,

Math Class 12 | Mathematics (Maths) Class 12 - JEE

,

ppt

,

Summary

,

practice quizzes

,

pdf

,

Math Class 12 | Mathematics (Maths) Class 12 - JEE

,

Objective type Questions

,

Free

,

Exam

,

CBSE Past Year Paper Session (2014) Solutions

,

video lectures

,

Viva Questions

,

Math Class 12 | Mathematics (Maths) Class 12 - JEE

,

study material

,

Important questions

,

Extra Questions

;