Download, print and study this document offline |
Page 1 374 Chapter 5: Integration EXERCISES 5.5 Evaluating Integrals Evaluate the indefinite integrals in Exercises 1–12 by using the given substitutions to reduce the integrals to standard form. 1. 2. L x sin s2x 2 d dx, u = 2x 2 L sin 3x dx, u = 3x 3. 4. L a1 - cos t 2 b 2 sin t 2 dt, u = 1 - cos t 2 L sec 2t tan 2t dt, u = 2t 4100 AWL/Thomas_ch05p325-395 8/20/04 9:57 AM Page 374 Page 2 374 Chapter 5: Integration EXERCISES 5.5 Evaluating Integrals Evaluate the indefinite integrals in Exercises 1–12 by using the given substitutions to reduce the integrals to standard form. 1. 2. L x sin s2x 2 d dx, u = 2x 2 L sin 3x dx, u = 3x 3. 4. L a1 - cos t 2 b 2 sin t 2 dt, u = 1 - cos t 2 L sec 2t tan 2t dt, u = 2t 4100 AWL/Thomas_ch05p325-395 8/20/04 9:57 AM Page 374 5. 6. 7. 8. 9. 10. 11. a. Using b. Using 12. a. Using b. Using Evaluate the integrals in Exercises 13–48. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. L 6 cos t s2 + sin td 3 dt L sin s2t + 1d cos 2 s2t + 1d dt L csc a y - p 2 b cot a y - p 2 b dy L sec ay + p 2 b tan ay + p 2 b dy L x 1>3 sin sx 4>3 - 8d dx L x 1>2 sin sx 3>2 + 1d dx L r 4 a7 - r 5 10 b 3 dr L r 2 a r 3 18 - 1b 5 dr L tan 7 x 2 sec 2 x 2 dx L sin 5 x 3 cos x 3 dx L tan 2 x sec 2 x dx L sec 2 s3x + 2d dx L sin s8z - 5d dz L cos s3z + 4d dz L s1 +1xd 3 1x dx L 1 1x s1 +1xd 2 dx L 4y dy 22y 2 + 1 L 3y27 - 3y 2 dy L 8u2 3 u 2 - 1 du L u2 4 1 - u 2 du L 3 dx s2 - xd 2 L 1 25s + 4 ds L s2x + 1d 3 dx L 23 - 2s ds u =25x + 8 u = 5x + 8 L dx 25x + 8 u = csc 2u u = cot 2u L csc 2 2u cot 2u du L 1 x 2 cos 2 a 1 x b dx, u =- 1 x L 1x sin 2 sx 3>2 - 1d dx, u = x 3>2 - 1 L 12s y 4 + 4y 2 + 1d 2 s y 3 + 2yd dy, u = y 4 + 4y 2 + 1 L 9r 2 dr 21 - r 3 , u = 1 - r 3 L x 3 sx 4 - 1d 2 dx, u = x 4 - 1 L 28s7x - 2d -5 dx, u = 7x - 2 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. Simplifying Integrals Step by Step If you do not know what substitution to make, try reducing the integral step by step, using a trial substitution to simplify the integral a bit and then another to simplify it some more. Y ou will see what we mean if you try the sequences of substitutions in Exercises 49 and 50. 49. a. followed by then by b. followed by c. 50. a. followed by then by b. followed by c. Evaluate the integrals in Exercises 51 and 52. 51. 52. Initial Value Problems Solve the initial value problems in Exercises 53–58. 53. 54. 55. 56. dr du = 3 cos 2 a p 4 - ub, rs0d = p 8 ds dt = 8 sin 2 at + p 12 b, ss0d = 8 dy dx = 4x sx 2 + 8d -1>3 , ys0d = 0 ds dt = 12t s3t 2 - 1d 3 , ss1d = 3 L sin 2u 2u cos 3 1u du L s2r - 1d cos 23s2r - 1d 2 + 6 23s2r - 1d 2 + 6 dr u = 1 + sin 2 sx - 1d y = 1 + u 2 u = sin sx - 1d, w = 1 + y 2 y = sin u, u = x - 1, L 21 + sin 2 sx - 1d sin sx - 1d cos sx - 1d dx u = 2 + tan 3 x y = 2 + u u = tan 3 x, w = 2 + y y = u 3 , u = tan x, L 18 tan 2 x sec 2 x s2 + tan 3 xd 2 dx L 3x 5 2x 3 + 1 dx L x 3 2x 2 + 1 dx L A x - 1 x 5 dx L t 3 s1 + t 4 d 3 dt L su 4 - 2u 2 + 8u - 2dsu 3 - u + 2d du L ss 3 + 2s 2 - 5s + 5ds3s 2 + 4s - 5d ds L cos 2u 2u sin 2 2u du L 1 u 2 sin 1 u cos 1 u du L 1 1t coss1t + 3d dt L 1 t 2 cos a 1 t - 1b dt L sec z tan z 2sec z dz L 2cot y csc 2 y dy 5.5 Indefinite Integrals and the Substitution Rule 375 4100 AWL/Thomas_ch05p325-395 8/20/04 9:57 AM Page 375 Page 3 374 Chapter 5: Integration EXERCISES 5.5 Evaluating Integrals Evaluate the indefinite integrals in Exercises 1–12 by using the given substitutions to reduce the integrals to standard form. 1. 2. L x sin s2x 2 d dx, u = 2x 2 L sin 3x dx, u = 3x 3. 4. L a1 - cos t 2 b 2 sin t 2 dt, u = 1 - cos t 2 L sec 2t tan 2t dt, u = 2t 4100 AWL/Thomas_ch05p325-395 8/20/04 9:57 AM Page 374 5. 6. 7. 8. 9. 10. 11. a. Using b. Using 12. a. Using b. Using Evaluate the integrals in Exercises 13–48. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. L 6 cos t s2 + sin td 3 dt L sin s2t + 1d cos 2 s2t + 1d dt L csc a y - p 2 b cot a y - p 2 b dy L sec ay + p 2 b tan ay + p 2 b dy L x 1>3 sin sx 4>3 - 8d dx L x 1>2 sin sx 3>2 + 1d dx L r 4 a7 - r 5 10 b 3 dr L r 2 a r 3 18 - 1b 5 dr L tan 7 x 2 sec 2 x 2 dx L sin 5 x 3 cos x 3 dx L tan 2 x sec 2 x dx L sec 2 s3x + 2d dx L sin s8z - 5d dz L cos s3z + 4d dz L s1 +1xd 3 1x dx L 1 1x s1 +1xd 2 dx L 4y dy 22y 2 + 1 L 3y27 - 3y 2 dy L 8u2 3 u 2 - 1 du L u2 4 1 - u 2 du L 3 dx s2 - xd 2 L 1 25s + 4 ds L s2x + 1d 3 dx L 23 - 2s ds u =25x + 8 u = 5x + 8 L dx 25x + 8 u = csc 2u u = cot 2u L csc 2 2u cot 2u du L 1 x 2 cos 2 a 1 x b dx, u =- 1 x L 1x sin 2 sx 3>2 - 1d dx, u = x 3>2 - 1 L 12s y 4 + 4y 2 + 1d 2 s y 3 + 2yd dy, u = y 4 + 4y 2 + 1 L 9r 2 dr 21 - r 3 , u = 1 - r 3 L x 3 sx 4 - 1d 2 dx, u = x 4 - 1 L 28s7x - 2d -5 dx, u = 7x - 2 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. Simplifying Integrals Step by Step If you do not know what substitution to make, try reducing the integral step by step, using a trial substitution to simplify the integral a bit and then another to simplify it some more. Y ou will see what we mean if you try the sequences of substitutions in Exercises 49 and 50. 49. a. followed by then by b. followed by c. 50. a. followed by then by b. followed by c. Evaluate the integrals in Exercises 51 and 52. 51. 52. Initial Value Problems Solve the initial value problems in Exercises 53–58. 53. 54. 55. 56. dr du = 3 cos 2 a p 4 - ub, rs0d = p 8 ds dt = 8 sin 2 at + p 12 b, ss0d = 8 dy dx = 4x sx 2 + 8d -1>3 , ys0d = 0 ds dt = 12t s3t 2 - 1d 3 , ss1d = 3 L sin 2u 2u cos 3 1u du L s2r - 1d cos 23s2r - 1d 2 + 6 23s2r - 1d 2 + 6 dr u = 1 + sin 2 sx - 1d y = 1 + u 2 u = sin sx - 1d, w = 1 + y 2 y = sin u, u = x - 1, L 21 + sin 2 sx - 1d sin sx - 1d cos sx - 1d dx u = 2 + tan 3 x y = 2 + u u = tan 3 x, w = 2 + y y = u 3 , u = tan x, L 18 tan 2 x sec 2 x s2 + tan 3 xd 2 dx L 3x 5 2x 3 + 1 dx L x 3 2x 2 + 1 dx L A x - 1 x 5 dx L t 3 s1 + t 4 d 3 dt L su 4 - 2u 2 + 8u - 2dsu 3 - u + 2d du L ss 3 + 2s 2 - 5s + 5ds3s 2 + 4s - 5d ds L cos 2u 2u sin 2 2u du L 1 u 2 sin 1 u cos 1 u du L 1 1t coss1t + 3d dt L 1 t 2 cos a 1 t - 1b dt L sec z tan z 2sec z dz L 2cot y csc 2 y dy 5.5 Indefinite Integrals and the Substitution Rule 375 4100 AWL/Thomas_ch05p325-395 8/20/04 9:57 AM Page 375 57. 58. 59. The velocity of a particle moving back and forth on a line is for all t. If when find the value of s when 60. The acceleration of a particle moving back and forth on a line is for all t. If and when find s when Theory and Examples 61. It looks as if we can integrate 2 sin x cos x with respect to x in three different ways: a. b. c. =- cos 2x 2 + C 3 . 2 sin x cos x = sin 2x L 2 sin x cos x dx = L sin 2x dx =-u 2 + C 2 =-cos 2 x + C 2 u = cos x, L 2 sin x cos x dx = L -2u du = u 2 + C 1 = sin 2 x + C 1 u = sin x, L 2 sin x cos x dx = L 2u du t = 1 sec. t = 0, 8 m/sec y = s = 0 a = d 2 s>dt 2 = p 2 cos pt m>sec 2 t = p>2 sec. t = 0, s = 0 y = ds>dt = 6 sin 2t m>sec d 2 y dx 2 = 4 sec 2 2x tan 2x, y¿s0d = 4, ys0d =-1 d 2 s dt 2 =-4 sin a2t - p 2 b, s¿s0d = 100, ss0d = 0 Can all three integrations be correct? Give reasons for your an- swer. 62. The substitution gives The substitution gives Can both integrations be correct? Give reasons for your answer. 63. (Continuation of Example 9.) a. Show by evaluating the integral in the expression that the average value of over a full cycle is zero. b. The circuit that runs your electric stove is rated 240 volts rms. What is the peak value of the allowable voltage? c. Show that L 1>60 0 sV max d 2 sin 2 120 pt dt = sV max d 2 120 . V = V max sin 120 pt 1 s1>60d - 0 L 1>60 0 V max sin 120 pt dt L sec 2 x tan x dx = L u du = u 2 2 + C = sec 2 x 2 + C. u = sec x L sec 2 x tan x dx = L u du = u 2 2 + C = tan 2 x 2 + C. u = tan x 376 Chapter 5: Integration 4100 AWL/Thomas_ch05p325-395 8/20/04 9:57 AM Page 376Read More
1. What is integration in mathematics? |
2. How is integration used in engineering mathematics? |
3. What are the different methods of integration? |
4. How can I improve my integration skills in mathematics? |
5. What are the applications of integration in real life? |
|
Explore Courses for Engineering Mathematics exam
|