Conductometric titration is a laboratory method of quantitative analysis used to identify the concentration of a given analyte in a mixture. Conductometric titration involves the continuous addition of a reactant to a reaction mixture and the documentation of the corresponding change in the electrolytic conductivity of the reaction mixture. It can be noted that the electrical conductivity of an electrolytic solution is dependent on the number of free ions in the solution and the charge corresponding to each of these ions.
In this type of titration, upon the continuous addition of the titrant (and the continuous recording of the corresponding change in electrolytic conductivity), a sudden change in the conductivity implies that the stoichiometric point has been reached. The increase or decrease in the electrolytic conductivity in the conductometric titration process is linked to the change in the concentration of the hydroxyl and hydrogen ions (which are the two most conducting ions).
The strength of an acid can be determined via conductometric titration with a standard solution of a base. An example of a curve plotted for such a titration process is given below.
The method of conductometric titration is very useful in the titration of homogeneous suspensions or coloured solutions as these titrations cannot be done with the use of normal chemical indicators.
The principle of the conductometric titration process can be stated as follows – During a titration process, one ion is replaced with another and the difference in the ionic conductivities of these ions directly impacts the overall electrolytic conductivity of the solution.
It can also be observed that the ionic conductance values vary between cations and anions. Finally, the conductivity is also dependant upon the occurrence of a chemical reaction in the electrolytic solution.
The theory behind this type of titration states that the end-point corresponding to the titration process can be determined by means of conductivity measurement. For a neutralization reaction between an acid and a base, the addition of the base would lower conductivity of the solution initially. This is because the H+ ions would be replaced by the cationic part of the base.
After the equivalence point is reached, the concentration of the ionic entities will increase. This, in turn, increases the conductance of the solution. Therefore, two straight lines with opposite slopes will be obtained when the conductance values are plotted graphically. The point where these two lines intersect is the equivalence point.
The strength of the acid can now be calculated via the formula S2 = (V1S1)/10; where S2 is the strength of the acid, V1 is the volume of base added (as per the equivalence point on the conductometric titration graph), and S1 is the strength of the base (already known). Here, the volume of the acid (V2) is equal to 10 ml.
Some advantages of the conductometric titration process are listed below.
The two major disadvantages of this type of titration include:
48 videos|92 docs|41 tests
|
1. What is conductometric titration? |
2. How does conductometry work? |
3. What are the advantages of conductometric titration? |
4. What are the limitations of conductometric titration? |
5. How is the equivalence point determined in conductometric titration? |
|
Explore Courses for Chemistry exam
|