Download, print and study this document offline |
Page 1 28. n c v ice 2.3 1.30 = = ´ ´ = 3 10 10 8 8 q c n = æ è ç ç ö ø ÷ ÷ = æ è ç ö ø ÷ - - sin sin 1 1 1 1 ice 1.30 = - sin ( ) 1 0.77 29. (a) Let an gle of re frac tion in ma te rial 2 is r then sin sin q r = = 1.8 1.6 18 16 …(i) For (2) to (3) interface sin sin r 90 13 18 ° = = 1.3 1.8 Þ sin r = 13 18 …(ii) From (i) and (ii) sin q = ´ 18 16 13 18 Þ q = æ è ç ö ø ÷ - sin 1 13 16 (b) Yes, if q decreases r also decreases and become less than the critical angle and hence light goes into material 3. 30. Let maximum height of liq uid is h. From figure for crit i cal an gle C m = = + 1 2 2 sin C r h r …(i) Here r = 1 cm and m = 4 3 putting these values in Eq. (i). Solving we get h = 4 3 cm Here sin q m c g = = 1 2 3 Now if water film is poured on the glass air surface. Let emergent angle at glass water surface is r, then sin sin q m m c w g r = = ´ ´ 4 2 3 3 Þ sin sin r c = = ´ = 9 8 9 8 2 3 3 4 q Þ r = æ è ç ö ø ÷ - sin 1 3 4 32. For to tal in ter nal re flec tion at top sur face sin ( ) sin 90 90 1 2 ° - ° = r n n Þ cos r n n = 1 2 and sin sin q r n n = 2 1 Þ sin sin q = n n r 2 1 Þ sin cos q = - n n r 2 1 2 1 = - æ è ç ç ö ø ÷ ÷ n n n n 2 1 1 2 2 1 Þ sin q = - n n n 2 2 1 2 1 2 Þ q = æ è ç ç ö ø ÷ ÷ - - sin 1 2 1 2 1 n n 33. The de vi a tion an gle vary from 0° to q° where q = ° - 90 c …(i) where C is the critical angle Now, sin / / c w g = = = m m 4 3 3 2 8 9 From Eq. (i) cos sin q = C Þ cos q = 8 9 28 90–r r n 2 n 1 n 1 q h c h 22 r + h Page 2 28. n c v ice 2.3 1.30 = = ´ ´ = 3 10 10 8 8 q c n = æ è ç ç ö ø ÷ ÷ = æ è ç ö ø ÷ - - sin sin 1 1 1 1 ice 1.30 = - sin ( ) 1 0.77 29. (a) Let an gle of re frac tion in ma te rial 2 is r then sin sin q r = = 1.8 1.6 18 16 …(i) For (2) to (3) interface sin sin r 90 13 18 ° = = 1.3 1.8 Þ sin r = 13 18 …(ii) From (i) and (ii) sin q = ´ 18 16 13 18 Þ q = æ è ç ö ø ÷ - sin 1 13 16 (b) Yes, if q decreases r also decreases and become less than the critical angle and hence light goes into material 3. 30. Let maximum height of liq uid is h. From figure for crit i cal an gle C m = = + 1 2 2 sin C r h r …(i) Here r = 1 cm and m = 4 3 putting these values in Eq. (i). Solving we get h = 4 3 cm Here sin q m c g = = 1 2 3 Now if water film is poured on the glass air surface. Let emergent angle at glass water surface is r, then sin sin q m m c w g r = = ´ ´ 4 2 3 3 Þ sin sin r c = = ´ = 9 8 9 8 2 3 3 4 q Þ r = æ è ç ö ø ÷ - sin 1 3 4 32. For to tal in ter nal re flec tion at top sur face sin ( ) sin 90 90 1 2 ° - ° = r n n Þ cos r n n = 1 2 and sin sin q r n n = 2 1 Þ sin sin q = n n r 2 1 Þ sin cos q = - n n r 2 1 2 1 = - æ è ç ç ö ø ÷ ÷ n n n n 2 1 1 2 2 1 Þ sin q = - n n n 2 2 1 2 1 2 Þ q = æ è ç ç ö ø ÷ ÷ - - sin 1 2 1 2 1 n n 33. The de vi a tion an gle vary from 0° to q° where q = ° - 90 c …(i) where C is the critical angle Now, sin / / c w g = = = m m 4 3 3 2 8 9 From Eq. (i) cos sin q = C Þ cos q = 8 9 28 90–r r n 2 n 1 n 1 q h c h 22 r + h Þ q = æ è ç ö ø ÷ - cos 1 8 9 Hence deviation angle vary from 0° to cos . - æ è ç ö ø ÷ 1 8 9 34. (a)Only circular patch light escapes because only those rays which are incident within a cone of semivertex angle C [Critical angle] are refracted out of the water surface. All other rays are totally internally reflected as shown in figures (b) Now m = = + 1 2 2 sin C r h r or C = æ è ç ç ö ø ÷ ÷ - sin 1 1 m = + æ è ç ç ö ø ÷ ÷ - sin 1 2 2 r r h 35. For maximum angle q the angle 90 - r at left surface must be equal to critical angle Þ sin ( ) 90 1 100 125 4 5 ° - = = = r 1.25 Þ cos r = 4 5 Þ sin r = 3 5 Now, sin sin q r = = 1.25 5 4 Þ sin sin q = = ´ 5 4 5 4 3 5 r Þ q = æ è ç ö ø ÷ - sin 1 3 4 36. m d = + æ è ç ö ø ÷ sin sin A m A 2 2 3 2 2 2 2 2 2 = + æ è ç ö ø ÷ = sin sin sin sin cos sin A A A A A Þ cos A 2 3 2 = Þ A 2 30 = ° Þ A = ° 60 37. Here i r 1 1 0 = = ° . Now, let other face angle of incidence is r 2 Q r r A 1 2 + = Þ 0 2 + = r A Þ r A 2 30 = = ° sin sin r i 2 2 1 = 1.5 Þ sin sin i r 2 2 = 1.4 Þ sin sin i 2 30 = ´ ° 1.5 Þ i 2 1 19 = = ° - sin (0.75) 38. From figure sin Ð = Ð OQP OQR Hence the ray retrace its path. 39. 29 45° r 1 R P r 1 45° r 2 r 1 45° Q i 2 90°–r r 90°–r q 90 m = 1.0 m = 1.25 h S r h c c 30° 60° 30° 90° R B A Q 45° Page 3 28. n c v ice 2.3 1.30 = = ´ ´ = 3 10 10 8 8 q c n = æ è ç ç ö ø ÷ ÷ = æ è ç ö ø ÷ - - sin sin 1 1 1 1 ice 1.30 = - sin ( ) 1 0.77 29. (a) Let an gle of re frac tion in ma te rial 2 is r then sin sin q r = = 1.8 1.6 18 16 …(i) For (2) to (3) interface sin sin r 90 13 18 ° = = 1.3 1.8 Þ sin r = 13 18 …(ii) From (i) and (ii) sin q = ´ 18 16 13 18 Þ q = æ è ç ö ø ÷ - sin 1 13 16 (b) Yes, if q decreases r also decreases and become less than the critical angle and hence light goes into material 3. 30. Let maximum height of liq uid is h. From figure for crit i cal an gle C m = = + 1 2 2 sin C r h r …(i) Here r = 1 cm and m = 4 3 putting these values in Eq. (i). Solving we get h = 4 3 cm Here sin q m c g = = 1 2 3 Now if water film is poured on the glass air surface. Let emergent angle at glass water surface is r, then sin sin q m m c w g r = = ´ ´ 4 2 3 3 Þ sin sin r c = = ´ = 9 8 9 8 2 3 3 4 q Þ r = æ è ç ö ø ÷ - sin 1 3 4 32. For to tal in ter nal re flec tion at top sur face sin ( ) sin 90 90 1 2 ° - ° = r n n Þ cos r n n = 1 2 and sin sin q r n n = 2 1 Þ sin sin q = n n r 2 1 Þ sin cos q = - n n r 2 1 2 1 = - æ è ç ç ö ø ÷ ÷ n n n n 2 1 1 2 2 1 Þ sin q = - n n n 2 2 1 2 1 2 Þ q = æ è ç ç ö ø ÷ ÷ - - sin 1 2 1 2 1 n n 33. The de vi a tion an gle vary from 0° to q° where q = ° - 90 c …(i) where C is the critical angle Now, sin / / c w g = = = m m 4 3 3 2 8 9 From Eq. (i) cos sin q = C Þ cos q = 8 9 28 90–r r n 2 n 1 n 1 q h c h 22 r + h Þ q = æ è ç ö ø ÷ - cos 1 8 9 Hence deviation angle vary from 0° to cos . - æ è ç ö ø ÷ 1 8 9 34. (a)Only circular patch light escapes because only those rays which are incident within a cone of semivertex angle C [Critical angle] are refracted out of the water surface. All other rays are totally internally reflected as shown in figures (b) Now m = = + 1 2 2 sin C r h r or C = æ è ç ç ö ø ÷ ÷ - sin 1 1 m = + æ è ç ç ö ø ÷ ÷ - sin 1 2 2 r r h 35. For maximum angle q the angle 90 - r at left surface must be equal to critical angle Þ sin ( ) 90 1 100 125 4 5 ° - = = = r 1.25 Þ cos r = 4 5 Þ sin r = 3 5 Now, sin sin q r = = 1.25 5 4 Þ sin sin q = = ´ 5 4 5 4 3 5 r Þ q = æ è ç ö ø ÷ - sin 1 3 4 36. m d = + æ è ç ö ø ÷ sin sin A m A 2 2 3 2 2 2 2 2 2 = + æ è ç ö ø ÷ = sin sin sin sin cos sin A A A A A Þ cos A 2 3 2 = Þ A 2 30 = ° Þ A = ° 60 37. Here i r 1 1 0 = = ° . Now, let other face angle of incidence is r 2 Q r r A 1 2 + = Þ 0 2 + = r A Þ r A 2 30 = = ° sin sin r i 2 2 1 = 1.5 Þ sin sin i r 2 2 = 1.4 Þ sin sin i 2 30 = ´ ° 1.5 Þ i 2 1 19 = = ° - sin (0.75) 38. From figure sin Ð = Ð OQP OQR Hence the ray retrace its path. 39. 29 45° r 1 R P r 1 45° r 2 r 1 45° Q i 2 90°–r r 90°–r q 90 m = 1.0 m = 1.25 h S r h c c 30° 60° 30° 90° R B A Q 45° The ray re trace its path from ref. by sur face AB hence Ð = ° ARq 90 from ge om e try it is clear that r = ° 30 m = sin sin i r Þ m = ° ° sin sin 45 30 Þ m = 1 2 1 2 / / Þ m = 2 40. Depends on formula. 41. The maximum an gle will be A C = 2 where C is the critical angle Now, C = æ è ç ö ø ÷ = - sin 1 1 1.5 41.81 Hence A C = = ´ = 2 2 41.81 83.62 42. m d = + æ è ç ö ø ÷ sin sin A A m 2 2 here A = ° 60 1.5 = ° + æ è ç ö ø ÷ ° sin sin 60 2 30 d m 0.75 = ° + æ è ç ö ø ÷ sin 60 2 d m Þ 60 2 1 ° + = - d m sin ( ) 0.75 Þ d m = 22.8 and not deviation = ° - = ° 180 22.8 157.2 (b) If the system is placed in water m = = 1.5 4/3 4.5 4 Þ 60 2 30 1 ° + ¢ = ´ ° - d m sin ( sin ) 1.125 Þ d m ¢ = é ë ê ù û ú - ° - 2 60 1 sin 1.125 2 Net deviation = - = ° 180 d m 128.4 43. w m m m = - - V R Y 1 0.0305 1.665 1.645 = - - m y 1 On solving we get my = 1.656 44. w w 1 1 2 2 0 f f + = Þ 0.18 20 30 2 + - w Þ w 2 30 20 = ´ 0.18 Þ w 2 = 0.27 Now, 1 1 1 1 2 F f f = + Þ 1 1 20 1 30 F = - Þ F = 60 cm 45. w w 1 1 2 2 0 f f + = Þ w w 1 2 1 2 = - f f 3 2 1 2 = - f f Þ f f 1 2 3 2 = - Now, 1 1 1 1 2 F f f = + Þ 1 150 1 2 3 2 2 = - f f f 2 50 = cm and f 1 75 = - cm 46. Applying m = sin sin i r 1 1 Find angle r 1 for two different refraction indices. Because i 1 65 = ° from both the cases. Then again apply m = sin sin i r 2 2 and find i 2 . Because r A r 2 1 = - . Then apply : d = + - ( ) i i A 1 2 for two refraction indices. Then difference in deviations is : Dd d d = - 1 2 30 Page 4 28. n c v ice 2.3 1.30 = = ´ ´ = 3 10 10 8 8 q c n = æ è ç ç ö ø ÷ ÷ = æ è ç ö ø ÷ - - sin sin 1 1 1 1 ice 1.30 = - sin ( ) 1 0.77 29. (a) Let an gle of re frac tion in ma te rial 2 is r then sin sin q r = = 1.8 1.6 18 16 …(i) For (2) to (3) interface sin sin r 90 13 18 ° = = 1.3 1.8 Þ sin r = 13 18 …(ii) From (i) and (ii) sin q = ´ 18 16 13 18 Þ q = æ è ç ö ø ÷ - sin 1 13 16 (b) Yes, if q decreases r also decreases and become less than the critical angle and hence light goes into material 3. 30. Let maximum height of liq uid is h. From figure for crit i cal an gle C m = = + 1 2 2 sin C r h r …(i) Here r = 1 cm and m = 4 3 putting these values in Eq. (i). Solving we get h = 4 3 cm Here sin q m c g = = 1 2 3 Now if water film is poured on the glass air surface. Let emergent angle at glass water surface is r, then sin sin q m m c w g r = = ´ ´ 4 2 3 3 Þ sin sin r c = = ´ = 9 8 9 8 2 3 3 4 q Þ r = æ è ç ö ø ÷ - sin 1 3 4 32. For to tal in ter nal re flec tion at top sur face sin ( ) sin 90 90 1 2 ° - ° = r n n Þ cos r n n = 1 2 and sin sin q r n n = 2 1 Þ sin sin q = n n r 2 1 Þ sin cos q = - n n r 2 1 2 1 = - æ è ç ç ö ø ÷ ÷ n n n n 2 1 1 2 2 1 Þ sin q = - n n n 2 2 1 2 1 2 Þ q = æ è ç ç ö ø ÷ ÷ - - sin 1 2 1 2 1 n n 33. The de vi a tion an gle vary from 0° to q° where q = ° - 90 c …(i) where C is the critical angle Now, sin / / c w g = = = m m 4 3 3 2 8 9 From Eq. (i) cos sin q = C Þ cos q = 8 9 28 90–r r n 2 n 1 n 1 q h c h 22 r + h Þ q = æ è ç ö ø ÷ - cos 1 8 9 Hence deviation angle vary from 0° to cos . - æ è ç ö ø ÷ 1 8 9 34. (a)Only circular patch light escapes because only those rays which are incident within a cone of semivertex angle C [Critical angle] are refracted out of the water surface. All other rays are totally internally reflected as shown in figures (b) Now m = = + 1 2 2 sin C r h r or C = æ è ç ç ö ø ÷ ÷ - sin 1 1 m = + æ è ç ç ö ø ÷ ÷ - sin 1 2 2 r r h 35. For maximum angle q the angle 90 - r at left surface must be equal to critical angle Þ sin ( ) 90 1 100 125 4 5 ° - = = = r 1.25 Þ cos r = 4 5 Þ sin r = 3 5 Now, sin sin q r = = 1.25 5 4 Þ sin sin q = = ´ 5 4 5 4 3 5 r Þ q = æ è ç ö ø ÷ - sin 1 3 4 36. m d = + æ è ç ö ø ÷ sin sin A m A 2 2 3 2 2 2 2 2 2 = + æ è ç ö ø ÷ = sin sin sin sin cos sin A A A A A Þ cos A 2 3 2 = Þ A 2 30 = ° Þ A = ° 60 37. Here i r 1 1 0 = = ° . Now, let other face angle of incidence is r 2 Q r r A 1 2 + = Þ 0 2 + = r A Þ r A 2 30 = = ° sin sin r i 2 2 1 = 1.5 Þ sin sin i r 2 2 = 1.4 Þ sin sin i 2 30 = ´ ° 1.5 Þ i 2 1 19 = = ° - sin (0.75) 38. From figure sin Ð = Ð OQP OQR Hence the ray retrace its path. 39. 29 45° r 1 R P r 1 45° r 2 r 1 45° Q i 2 90°–r r 90°–r q 90 m = 1.0 m = 1.25 h S r h c c 30° 60° 30° 90° R B A Q 45° The ray re trace its path from ref. by sur face AB hence Ð = ° ARq 90 from ge om e try it is clear that r = ° 30 m = sin sin i r Þ m = ° ° sin sin 45 30 Þ m = 1 2 1 2 / / Þ m = 2 40. Depends on formula. 41. The maximum an gle will be A C = 2 where C is the critical angle Now, C = æ è ç ö ø ÷ = - sin 1 1 1.5 41.81 Hence A C = = ´ = 2 2 41.81 83.62 42. m d = + æ è ç ö ø ÷ sin sin A A m 2 2 here A = ° 60 1.5 = ° + æ è ç ö ø ÷ ° sin sin 60 2 30 d m 0.75 = ° + æ è ç ö ø ÷ sin 60 2 d m Þ 60 2 1 ° + = - d m sin ( ) 0.75 Þ d m = 22.8 and not deviation = ° - = ° 180 22.8 157.2 (b) If the system is placed in water m = = 1.5 4/3 4.5 4 Þ 60 2 30 1 ° + ¢ = ´ ° - d m sin ( sin ) 1.125 Þ d m ¢ = é ë ê ù û ú - ° - 2 60 1 sin 1.125 2 Net deviation = - = ° 180 d m 128.4 43. w m m m = - - V R Y 1 0.0305 1.665 1.645 = - - m y 1 On solving we get my = 1.656 44. w w 1 1 2 2 0 f f + = Þ 0.18 20 30 2 + - w Þ w 2 30 20 = ´ 0.18 Þ w 2 = 0.27 Now, 1 1 1 1 2 F f f = + Þ 1 1 20 1 30 F = - Þ F = 60 cm 45. w w 1 1 2 2 0 f f + = Þ w w 1 2 1 2 = - f f 3 2 1 2 = - f f Þ f f 1 2 3 2 = - Now, 1 1 1 1 2 F f f = + Þ 1 150 1 2 3 2 2 = - f f f 2 50 = cm and f 1 75 = - cm 46. Applying m = sin sin i r 1 1 Find angle r 1 for two different refraction indices. Because i 1 65 = ° from both the cases. Then again apply m = sin sin i r 2 2 and find i 2 . Because r A r 2 1 = - . Then apply : d = + - ( ) i i A 1 2 for two refraction indices. Then difference in deviations is : Dd d d = - 1 2 30 Objective Questions (Level-1) 1. Endoscope is bases on to tal in ter nal refraction Hence, correct option is (c) 2. Here m l = + A B 2 Q m is dimensionless. Þ B l 2 = dimension of m Þ B = l 2 Þ B has dimension of Area Hence, correct option is (d). 3. Shift = - æ è ç ç ö ø ÷ ÷ 1 1 m Q m R is minimum. than other visible colour. Red colour least raised. correct option is (c) 4. Critical an gle q m C = æ è ç ç ö ø ÷ ÷ - sin 1 1 Q m 0 is maximum for violet colour hence q c for violet colour is least. Hence correct option is (d) 5. We have P f = 1 (metre) = = ´ - + é ë ê ù û ú 100 100 1 1 1 f n R r ( ) ( ) cm Þ P = ´ ´ = + 100 2 10 12 0.6 Hence, correct option is (a). 6. Speed of light in wa ter = c w m Þ v w = ´ = ´ 3 10 4 3 10 8 8 / 2.25 m/s Hence correct option os (c). 7. Due to TIR emer gent beam will turn into black. Hence correct option is (c). 8. Q v n = l but fre quency n re main constant and v de creases hence l de creases. Hence correct option is (b). 9. Using Snell’s law On first and 2nd interface sin sin i q m m = 2 1 …(i) and sin sin q m m r = 3 2 …(ii) Multiplying (i) and (ii), we get sin sin i r = m m 3 1 Hence correct option is (b). 10. We have i r = 1 and r i 2 90 = - Now sin sin i r 2 1 = m Þ sin sin ( ) i i 90 1 ° - = m Þ tan i = 1 m …(i) If C is the critical angle then C = æ è ç ç ö ø ÷ ÷ - sin 1 1 m Þ C i = - sin (tan ) 1 Hence correct option is (a). 31 q q m 2 r m 3 m 1 i 1 2 90° i r 2 B A C r 1 Denser medium Rarer medium Page 5 28. n c v ice 2.3 1.30 = = ´ ´ = 3 10 10 8 8 q c n = æ è ç ç ö ø ÷ ÷ = æ è ç ö ø ÷ - - sin sin 1 1 1 1 ice 1.30 = - sin ( ) 1 0.77 29. (a) Let an gle of re frac tion in ma te rial 2 is r then sin sin q r = = 1.8 1.6 18 16 …(i) For (2) to (3) interface sin sin r 90 13 18 ° = = 1.3 1.8 Þ sin r = 13 18 …(ii) From (i) and (ii) sin q = ´ 18 16 13 18 Þ q = æ è ç ö ø ÷ - sin 1 13 16 (b) Yes, if q decreases r also decreases and become less than the critical angle and hence light goes into material 3. 30. Let maximum height of liq uid is h. From figure for crit i cal an gle C m = = + 1 2 2 sin C r h r …(i) Here r = 1 cm and m = 4 3 putting these values in Eq. (i). Solving we get h = 4 3 cm Here sin q m c g = = 1 2 3 Now if water film is poured on the glass air surface. Let emergent angle at glass water surface is r, then sin sin q m m c w g r = = ´ ´ 4 2 3 3 Þ sin sin r c = = ´ = 9 8 9 8 2 3 3 4 q Þ r = æ è ç ö ø ÷ - sin 1 3 4 32. For to tal in ter nal re flec tion at top sur face sin ( ) sin 90 90 1 2 ° - ° = r n n Þ cos r n n = 1 2 and sin sin q r n n = 2 1 Þ sin sin q = n n r 2 1 Þ sin cos q = - n n r 2 1 2 1 = - æ è ç ç ö ø ÷ ÷ n n n n 2 1 1 2 2 1 Þ sin q = - n n n 2 2 1 2 1 2 Þ q = æ è ç ç ö ø ÷ ÷ - - sin 1 2 1 2 1 n n 33. The de vi a tion an gle vary from 0° to q° where q = ° - 90 c …(i) where C is the critical angle Now, sin / / c w g = = = m m 4 3 3 2 8 9 From Eq. (i) cos sin q = C Þ cos q = 8 9 28 90–r r n 2 n 1 n 1 q h c h 22 r + h Þ q = æ è ç ö ø ÷ - cos 1 8 9 Hence deviation angle vary from 0° to cos . - æ è ç ö ø ÷ 1 8 9 34. (a)Only circular patch light escapes because only those rays which are incident within a cone of semivertex angle C [Critical angle] are refracted out of the water surface. All other rays are totally internally reflected as shown in figures (b) Now m = = + 1 2 2 sin C r h r or C = æ è ç ç ö ø ÷ ÷ - sin 1 1 m = + æ è ç ç ö ø ÷ ÷ - sin 1 2 2 r r h 35. For maximum angle q the angle 90 - r at left surface must be equal to critical angle Þ sin ( ) 90 1 100 125 4 5 ° - = = = r 1.25 Þ cos r = 4 5 Þ sin r = 3 5 Now, sin sin q r = = 1.25 5 4 Þ sin sin q = = ´ 5 4 5 4 3 5 r Þ q = æ è ç ö ø ÷ - sin 1 3 4 36. m d = + æ è ç ö ø ÷ sin sin A m A 2 2 3 2 2 2 2 2 2 = + æ è ç ö ø ÷ = sin sin sin sin cos sin A A A A A Þ cos A 2 3 2 = Þ A 2 30 = ° Þ A = ° 60 37. Here i r 1 1 0 = = ° . Now, let other face angle of incidence is r 2 Q r r A 1 2 + = Þ 0 2 + = r A Þ r A 2 30 = = ° sin sin r i 2 2 1 = 1.5 Þ sin sin i r 2 2 = 1.4 Þ sin sin i 2 30 = ´ ° 1.5 Þ i 2 1 19 = = ° - sin (0.75) 38. From figure sin Ð = Ð OQP OQR Hence the ray retrace its path. 39. 29 45° r 1 R P r 1 45° r 2 r 1 45° Q i 2 90°–r r 90°–r q 90 m = 1.0 m = 1.25 h S r h c c 30° 60° 30° 90° R B A Q 45° The ray re trace its path from ref. by sur face AB hence Ð = ° ARq 90 from ge om e try it is clear that r = ° 30 m = sin sin i r Þ m = ° ° sin sin 45 30 Þ m = 1 2 1 2 / / Þ m = 2 40. Depends on formula. 41. The maximum an gle will be A C = 2 where C is the critical angle Now, C = æ è ç ö ø ÷ = - sin 1 1 1.5 41.81 Hence A C = = ´ = 2 2 41.81 83.62 42. m d = + æ è ç ö ø ÷ sin sin A A m 2 2 here A = ° 60 1.5 = ° + æ è ç ö ø ÷ ° sin sin 60 2 30 d m 0.75 = ° + æ è ç ö ø ÷ sin 60 2 d m Þ 60 2 1 ° + = - d m sin ( ) 0.75 Þ d m = 22.8 and not deviation = ° - = ° 180 22.8 157.2 (b) If the system is placed in water m = = 1.5 4/3 4.5 4 Þ 60 2 30 1 ° + ¢ = ´ ° - d m sin ( sin ) 1.125 Þ d m ¢ = é ë ê ù û ú - ° - 2 60 1 sin 1.125 2 Net deviation = - = ° 180 d m 128.4 43. w m m m = - - V R Y 1 0.0305 1.665 1.645 = - - m y 1 On solving we get my = 1.656 44. w w 1 1 2 2 0 f f + = Þ 0.18 20 30 2 + - w Þ w 2 30 20 = ´ 0.18 Þ w 2 = 0.27 Now, 1 1 1 1 2 F f f = + Þ 1 1 20 1 30 F = - Þ F = 60 cm 45. w w 1 1 2 2 0 f f + = Þ w w 1 2 1 2 = - f f 3 2 1 2 = - f f Þ f f 1 2 3 2 = - Now, 1 1 1 1 2 F f f = + Þ 1 150 1 2 3 2 2 = - f f f 2 50 = cm and f 1 75 = - cm 46. Applying m = sin sin i r 1 1 Find angle r 1 for two different refraction indices. Because i 1 65 = ° from both the cases. Then again apply m = sin sin i r 2 2 and find i 2 . Because r A r 2 1 = - . Then apply : d = + - ( ) i i A 1 2 for two refraction indices. Then difference in deviations is : Dd d d = - 1 2 30 Objective Questions (Level-1) 1. Endoscope is bases on to tal in ter nal refraction Hence, correct option is (c) 2. Here m l = + A B 2 Q m is dimensionless. Þ B l 2 = dimension of m Þ B = l 2 Þ B has dimension of Area Hence, correct option is (d). 3. Shift = - æ è ç ç ö ø ÷ ÷ 1 1 m Q m R is minimum. than other visible colour. Red colour least raised. correct option is (c) 4. Critical an gle q m C = æ è ç ç ö ø ÷ ÷ - sin 1 1 Q m 0 is maximum for violet colour hence q c for violet colour is least. Hence correct option is (d) 5. We have P f = 1 (metre) = = ´ - + é ë ê ù û ú 100 100 1 1 1 f n R r ( ) ( ) cm Þ P = ´ ´ = + 100 2 10 12 0.6 Hence, correct option is (a). 6. Speed of light in wa ter = c w m Þ v w = ´ = ´ 3 10 4 3 10 8 8 / 2.25 m/s Hence correct option os (c). 7. Due to TIR emer gent beam will turn into black. Hence correct option is (c). 8. Q v n = l but fre quency n re main constant and v de creases hence l de creases. Hence correct option is (b). 9. Using Snell’s law On first and 2nd interface sin sin i q m m = 2 1 …(i) and sin sin q m m r = 3 2 …(ii) Multiplying (i) and (ii), we get sin sin i r = m m 3 1 Hence correct option is (b). 10. We have i r = 1 and r i 2 90 = - Now sin sin i r 2 1 = m Þ sin sin ( ) i i 90 1 ° - = m Þ tan i = 1 m …(i) If C is the critical angle then C = æ è ç ç ö ø ÷ ÷ - sin 1 1 m Þ C i = - sin (tan ) 1 Hence correct option is (a). 31 q q m 2 r m 3 m 1 i 1 2 90° i r 2 B A C r 1 Denser medium Rarer medium 11. Let an gle of min i mum deviation is d m we know that m d = + æ è ç ö ø ÷ æ è ç ö ø ÷ sin sin A A m 2 2 Þ 2 60 2 30 = ° + ° sin ( ) sin d m Þ 1 2 60 2 = ° + æ è ç ö ø ÷ sin d m Þ 60 2 45 + = ° d m Þ d m = ° 30 Hence correct option is (a). 12. We know that 1 1 1 1 1 2 f n R R = - - æ è ç ç ö ø ÷ ÷ ( ) 1 15 1 1 1 2 1 2 a R R = - - æ è ç ç ö ø ÷ ÷ ( . ) Þ 1 0 1 1 1 1 2 0.2 .5 = - - æ è ç ç ö ø ÷ ÷ ( ) R R ...(i) Let refractive index of the liquid s n l Þ 1 1 1 1 1 2 f n n R R cm l = - æ è ç ç ö ø ÷ ÷ - æ è ç ç ö ø ÷ ÷ Þ - = - æ è ç ç ö ø ÷ ÷ ´ 1 1 10 0.5 1.5 n l Þ - = - 1 5 1 1.5 n l Þ 1.5 n l = 4 5 Þ 5 4 ´ = 1.5 n l Þ n l = 15 8 Hence correct option is (b). 13. We have, sin sin i r 1 1 = m m …(i) sin sin r r 1 2 2 1 = m m …(ii) and sin sin r r 2 3 3 2 = m m …(iii) sin sin r x 3 4 3 = m m …(iv) Multiplying (i), (ii), (iii) and (iv), we get sin sin i x = m m 4 Þ sin sin x i = m m 4 Hence correct option is (b) 14. Let ra dius of cur va ture of the lens is R then 1 1 1 1 f n R R = - + æ è ç ö ø ÷ ( ) Þ f R x = - 2 1 ( ) Let focal length of one part is f ¢ then 1 1 1 1 f n R ¢ = - - ¥ é ë ê ù û ú ( ) Þ f R n f ¢ = - = ¢ ( ) 1 2 The focal length of the combination is 1 1 2 1 2 1 2 1 2 F f f f f = + + + Þ F f = 2 Hence correct option is (b). 15. Here P = + 5D Þ f + = 20 cm Þ 1 20 1 1 1 1 2 = - - é ë ê ù û ú ( ) 1.5 R R …(i) and - = - æ è ç ç ö ø ÷ ÷ - é ë ê ù û ú 1 100 1 1 1 1 2 1.5 n R R e …(ii) Dividing Eq. (ii) by (i) - = - æ è ç ç ö ø ÷ ÷ 1 5 1 1.5 0.5 n l Þ 1 10 1 + = 1.5 n l Þ n l = 5 3 Hence correct option is (b). 32 m 1 m i r 1 r r 2 m 2 m 3 x x r 3 m 4Read More
|
Explore Courses for JEE exam
|