Mathematics Exam  >  Mathematics Notes  >  Calculus  >  Double Integrals

Double Integrals | Calculus - Mathematics PDF Download

Before starting on double integrals let’s do a quick review of the definition of definite integrals for functions of single variables. First, when working with the integral,
Double Integrals | Calculus - Mathematics
we think of x ’s as coming from the interval a ≤ x ≤ b . For these integrals we can say that we are integrating over the interval a ≤ x ≤ b . Note that this does assume that a < b , however, if we have b < a then we can just use the interval b ≤ x ≤ a . Now, when we derived the definition of the definite integral we first thought of this as an area problem. We first asked what the area under the curve was and to do this we broke up the interval a ≤ x ≤ b into n subintervals of width Δ x and choose a point, x ∗ i , from each interval as shown below,
Double Integrals | Calculus - Mathematics
Each of the rectangles has height of f ( x ∗ i ) and we could then use the area of each of these rectangles to approximate the area as follows.

Double Integrals | Calculus - Mathematics
To get the exact area we then took the limit as n goes to infinity and this was also the definition of the definite integral.
Double Integrals | Calculus - Mathematics
In this section we want to integrate a function of two variables,f(x,y).With functions of one variable we integrated over an interval (i.e. a one-dimensional space) and so it makes some sense then that when integrating a function of two variables we will integrate over a region of R2 (two-dimensional space).
We will start out by assuming that the region in R2 is a rectangle which we will denote as follows,
Double Integrals | Calculus - Mathematics
This means that the ranges for x and y y are a≤x≤b and c≤y≤d. Also, we will initially assume that f(x,y)≥0 although this doesn’t really have to be the case. Let’s start out with the graph of the surface S S given by graphing f(x,y) over the rectangle R.
Double Integrals | Calculus - Mathematics
Now, just like with functions of one variable let’s not worry about integrals quite yet. Let’s first ask what the volume of the region under S (and above the xy-plane of course) is. We will approximate the volume much as we approximated the area above. We will first divide up a ≤ x ≤ b into n subintervals and divide up c ≤ y ≤ d into m subintervals. This will divide up R into a series of smaller rectangles and from each of these we will choose a point ( x ∗ i , y ∗ j ) . Here is a sketch of this set up.
Double Integrals | Calculus - Mathematics
Now, over each of these smaller rectangles we will construct a box whose height is given by f ( x ∗ i , y ∗ j ) f(xi∗,yj) Here is a sketch of that.
Double Integrals | Calculus - Mathematics
Each of the rectangles has a base area of Δ A and a height of f ( x ∗ i , y ∗ j ) so the volume of each of these boxes is f ( x ∗ i , y ∗ j ) Δ A . The volume under the surface S is then approximately,
Double Integrals | Calculus - Mathematics
We will have a double sum since we will need to add up volumes in both the x and y directions. To get a better estimation of the volume we will take n and m larger and larger and to get the exact volume we will need to take the limit as both n and m go to infinity. In other words,
Double Integrals | Calculus - Mathematics
Now, this should look familiar. This looks a lot like the definition of the integral of a function of single variable. In fact, this is also the definition of a double integral, or more exactly an integral of a function of two variables over a rectangle.

Here is the official definition of a double integral of a function of two variables over a rectangular
region R as well as the notation that we’ll use for it.
Double Integrals | Calculus - Mathematics
Note the similarities and differences in the notation to single integrals. We have two integrals to denote the fact that we are dealing with a two dimensional region and we have a differential here as well. Note that the differential is dA instead of the dx and dy that we’re used to seeing. Note as well that we don’t have limits on the integrals in this notation. Instead we have the R written below the two integrals to denote the region that we are integrating over. As indicated above one interpretation of the double integral of f ( x , y ) over the rectangle R is the volume under the function f ( x , y ) (and above the xy-plane). Or,

Double Integrals | Calculus - Mathematics
We can use this double sum in the definition to estimate the value of a double integral if we need to. We can do this by choosing ( x ∗ i , y ∗ j ) to be the midpoint of each rectangle. When we do this we usually denote the point asDouble Integrals | Calculus - Mathematics. This leads to the Midpoint Rule,
Double Integrals | Calculus - Mathematics
In the next section we start looking at how to actually compute double integrals.

The document Double Integrals | Calculus - Mathematics is a part of the Mathematics Course Calculus.
All you need of Mathematics at this link: Mathematics
112 videos|65 docs|3 tests

FAQs on Double Integrals - Calculus - Mathematics

1. What is the definition of a double integral?
Ans. A double integral is a type of integral that computes the signed area between a given function and a region in a two-dimensional plane. It represents the accumulation of a function's values over a region.
2. How is a double integral evaluated?
Ans. To evaluate a double integral, we divide the region of integration into small rectangles and approximate the function values within each rectangle. Then, we sum up these approximations to calculate the integral. The more rectangles we use, the more accurate the approximation becomes.
3. What are some applications of double integrals?
Ans. Double integrals have various applications in mathematics and physics. They can be used to find the area of irregular shapes, calculate the mass or center of mass of objects with varying density, determine the probability of events in statistics, and solve problems related to fluid flow and electromagnetic fields.
4. Can double integrals be computed using different coordinate systems?
Ans. Yes, double integrals can be computed using different coordinate systems. The most common coordinate systems used are Cartesian coordinates (x, y), but polar coordinates (r, θ) and other coordinate systems can also be employed depending on the problem's nature. The choice of coordinate system often simplifies the evaluation of the integral.
5. Are there any techniques to simplify the evaluation of double integrals?
Ans. Yes, there are several techniques to simplify the evaluation of double integrals. Some common techniques include changing the order of integration, using symmetry properties to reduce the region of integration, and applying appropriate coordinate transformations to convert the integral into a simpler form. Additionally, using specialized integration techniques such as integration by parts or trigonometric substitutions can also simplify the evaluation process.
112 videos|65 docs|3 tests
Download as PDF
Explore Courses for Mathematics exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

pdf

,

study material

,

Objective type Questions

,

practice quizzes

,

Double Integrals | Calculus - Mathematics

,

Extra Questions

,

ppt

,

Summary

,

shortcuts and tricks

,

Viva Questions

,

Sample Paper

,

MCQs

,

Semester Notes

,

Important questions

,

video lectures

,

Double Integrals | Calculus - Mathematics

,

Free

,

Previous Year Questions with Solutions

,

past year papers

,

Exam

,

mock tests for examination

,

Double Integrals | Calculus - Mathematics

;