Class 9 Exam  >  Class 9 Notes  >  Ex 2.5 NCERT Solutions - Polynomials

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

FACTORISATION USING ALGEBRAIC IDENTITIES

We have used the following identities in our earlier classes:

I . (x + y)2 = x2 + 2xy + y2
II . (x – y)2 = x2 – 2xy + y
III. x2 – y2 = (x + y)(x – y)
IV. (x + a)(x + b) = x2 + (a + b)x + ab

We shall use these identities to factorise algebraic expressions:
Note: The identity I can be extended to a trinomial such as (x + y + z)
= (p + z)2                       [Using x + y = p]
= p2 + 2pz + z2 = (x + y)2 + 2(x + y)z + z2
= x2 + y2 + 2xy + 2xz + 2yz + z2
= x2 + y2 + z2 + 2xy + 2yz + 2zx
∴ Thus, we have:

Identity V:  (x + y + z)= x2 + y2 + z2 + 2xy + 2yz + 2zx  
We can also extend the identity–I to complete (x + y)3.
We have: (x + y)3 = (x + y)(x + y)(x + y)
= (x + y)[(x + y)2] = (x + y)[x+ 2xy + y2]
= x[x2 + 2xy + y2] + y[x2 + 2xy + y2]
= [x3 + 2x2y + xy2] + [xy2 + 2xy2 + y3]
= x+ 3x2y + 3xy2 + y3 = x3 + y3 + 3xy(x + y)
Thus, we have:

Identity VI: (x + y)3= x3 + y3 + 3xy(x + y)
By replacing y by (–y) in identity VI, we have:
Identity VII: (x – y)3 = x3 – y3 – 3xy(x – y)
or (x – y)3 = x3 – 3x2y + 3xy2 – y3


Question 1. Use suitable identities to find the following products: (i) (x + 4)(x + 10) (ii) (x + 8)(x – 10) (iii) (3x + 4)(3x – 5) (iv)NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials (v) (3 – 2x)(3 + 2x)

 

Solution: (i) (x + 4)(x + 10): Using the identity (x + a)(x + b)
= x2 + (a + b)x + ab,
we have: (x + 4)(x + 10)
= x2 + (4 + 10)x + (4 x 10)
= x2 + 14x + 40

(ii) (x + 8)(x – 10): Here, a = 8 and b = (–10)
∴ Using (x + a)(x + b) = x+ (a + b)x + ab,
we have: (x + 8)(x – 10)
= x2 + [8 + (–10)]x + [8 x (–10)]
= x2 + [–2]x + [–80]
= x– 2x – 80

(iii) (3x + 4)(3x – 5): Using the identity (x + a)(x + b)
= x2 + (a + b)x + ab,
we have (3x + 4)(3x – 5)
= (3x)2 + [4 + (–5)]3x + [4 x (–5)]
= 9x2 + [–1]3x + [–20]
= 9x2 – 3x – 20

(iv) NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

Using the identity (a + b)(a – b) = a2 – b2, we have:

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

(v) (3 – 2x)(3 + 2x): Using the identity (a + b)(a – b) = a2 – b2,
we have: (3 – 2x)(3 + 2x)
= (3)2 – (2x)2 = 9 – 4x2


Question 2. Evaluate the following products without multiplying directly: (i) 103 x 107 (ii) 95 x 96 (iii) 104 x 96
 Solution: 
(i) We have 103 x 107 = (100 + 3)(100 + 7)
= (100)2 + (3 + 7) x 100 + (3 x 7)                                  [Using (x + a)(x + b) = x2 + (a + b)x + ab]
= 10000 + (10) x 100 + 21
= 10000 + 1000 + 21
= 11021

(ii) We have 95 x 96 = (100 – 5)(100 – 4)
= (100)2 + [(–5) + (–4)] x 100 + [(–5) x (–4)]                  [Using (x + a)(x + b) = x2 + (a + b)x + ab]
= 10000 + [–9] x 100 + 20
= 10000 + (–900) + 20
= 9120

(iii) We have 104 x 96
= (100 + 4)(100 – 4)
= (100)2 – (4)2               [Using (a + b)(a – b) = a2 – b2]
= 10000 – 16
= 9984

Question 3. Factorise the following using appropriate identities: (i) 9x2 + 6xy + y2 (ii) 4y2 – 4y + 1 (iii)NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

Solution: (i) We have 9x2 + 6xy + y
= (3x)2 + 2(3x)(y) + (y)
= (3x + y)2                                      [Using a2 + 2ab + b2 = (a + b)2]
= (3x + y)(3x + y)

(ii) We have 4y2 – 4y + 1
= (2y)2 – 2(2y)(1) + (1)
= (2y – 1)2                                  [∵ a2 – 2ab + b2 = (a – b)2]
= (2y – 1)(2y – 1)

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

 

Question 4. Expand each of the following, using suitable identities: (i) (x + 2y + 4z)2 (ii) (2x – y + z)2 (iii) (–2x + 3y + 2z)2 (iv) (3a – 7b – c)2 ( v ) (–2x + 5y – 3z)2NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

Solution: (i) (x + 2y + 4z)2
We have (x + y + z)
= x+ y2 + z+ 2xy + 2yz + 2zx
∴ (x + 2y + 4z)2
= (x)2 + (2y)+ (4z)2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)
= x2 + 4y2 + 16z2 + 4xy + 16yz + 8zx

(ii) (2x – y + z)2 Using (x + y + z)2
= x2 + y2 + z2 + 2xy + 2yz + 2zx,
we have (2x – y + z)2
= (2x)2 + (–y)2 + (z)2 + 2(2x)(–y) + 2(–y)(z) + 2(z)(2x)
= 4x2 + y+ z2 – 4xy – 2yz + 4zx

(iii) (–2x + 3y + 2z)2 Using (x + y + z)2
= x2 + y2 + z2 + 2xy + 2yz + 2zx,
we have (–2x + 3y + 2z)2
= (–2x)2 + (3y)2 + (2z)2 + 2(–2x)(3y) + 2(3y)(2z) + 2(2z)(–2x)
= 4x2 + 9y2 + 4z– 12xy + 12yz – 8zx

( iv) (3a – 7b – c)2 Using (x + y + z)
= x2 + y2 + z2 + 2xy + 2yz + 2zx,
we have (3a – 7b – c)2 = (3a)2 + (–7b)2 + (–c)+ 2(3a)(–7b) + 2(–7b)(–c) + 2(–c)(3a)
= 9a+ 49b2 + c2 + (–42ab) + (14bc) + (–6ca)
= 9a+ 49b2 + c2 – 42ab + 14bc – 6ca

( v ) (–2x + 5y – 3z)2 Using (x + y + z)2
=x2 + y+ z+ 2xy + 2yz + 2zx,
we have (–2x + 5y – 3z)2
 = (–2x)2 + (5y)+ (–3z)2 + 2(–2x)(5y) + 2(5y)(–3z) + 2(–3z) (–2x)
=4x2 + 25y2 + 9z2 + [–20xy] + [–30yz] + [12zx]
=4x2 + 25y2 + 9z2 – 20xy – 30yz + 12zx

(vi)      NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

Using (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx, we have

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials


Question 5. Factorise:

(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz (ii) 2x2 + y2 + 8z– 2 NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials xy + 4 NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials yz – 8xz 
Solution: (i)4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
= (2x)2 + (3y)2 + (–4z)2 + 2(2x)(3y) + 2(3y)(–4z) + 2(–4z)(2x) 
= (2x + 3y – 4z)2                  [Using Identity V]
= (2x + 3y – 4z)(2x + 3y – 4z)

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

Question 6. Write the following cubes in expanded form: (i) (2x + 1)3    (ii) (2a – 3b)3 NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

Solution: Using Identity VI and Identity VII, we have (x + y)= x3 + y3 + 3xy (x + y), and (x – y)3 = x3 – y3 – 3xy (x – y).

(i) (2x + 1)
= (2x)3 + (1)3 + 3(2x)(1)[(2x) + (1)]
= 8x3 + 1 + 6x[2x + 1]                             [Using Identity VI]
= 8x3 + 1 + 12x+ 6x = 8x3 + 12x+ 6x + 1


(ii) (2a – 3b)3
= (2a)– (3b)3 – 3(2a)(3b)[(2a) – (3b)]
= 8a3 – 27b3 – 18ab (2a – 3b)                         [Using Identity VII]
= 8a– 27b3 – [36a2b – 54ab2]
= 8a– 27b3 – 36a2b + 54ab2

 

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

Question 7. Evaluate the following using suitable identities: (i) (99)3 (ii) (102)(iii) (998)3 
 Solution:
(i) (99)3
We have 99 = 100 – 1
∴ 993 = (100 – 1)3
= 1003 – 13 – 3(100)(1)(100 – 1)
= 1000000 – 1 – 300(100 – 1)
= 1000000 – 1 – 30000 + 300
= 1000300 – 30001
= 970299

(ii) (102)
We have 102 = 100 + 2
∴ (102)3 = (100 + 2)3
= (100)3 + (2)3 + 3(100)(2) 100 + 2
= 1000000 + 8 + 600[100 + 2]
= 1000000 + 8 + 60000 + 1200
= 1061208

(iii) (998)3
We have 998 = 1000 – 2 ∴ (999)3 = (1000 – 2)3
= (1000)3 – (2)3 – 3(1000)(2)[1000 – 2]
= 1000000000 – 8 – 6000[1000 – 2]
= 1000000000 – 8 – 6000000 – 12000
= 994011992

 

Question 8. Factorise each of the following:
 (i) 8a3 + b3 + 12a2b + 6ab
 (ii) 8a– b– 12a2b + 6ab2
 (iii) 27 – 125a3 – 135a + 225a2
 (iv) 64a3 – 27b3 – 144a2b + 108ab2

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

Solution: (i)8a+ b3 + 12a2b + 6ab
= (2a)3 + (b)3 + 6ab(2a + b)
= (2a)+ (b)3 + 3(2a)(b)(2a + b)
= (2a + b)                                           [Using Identity VI]
= (2a + b)(2a + b)(2a + b)


(ii)8a3 – b3 – 12a2b + 6ab
= (2a)3 – (b)3 – 3(2a)(b)(2a – b)
= (2a – b)                                           [Using Identity VII]
= (2a – b)(2a – b)(2a – b)


(iii) 27 – 125a3 – 135a + 225a
= (3)3 – (5a)3 – 3(3)(5a)[3 – 5a]
= (3 – 5a)3                                           [Using Identity VII]
= (3 – 5a)(3 – 5a)(3 – 5a)


(iv) 64a3 – 27b3 – 144 a2b + 108 ab2
= (4a)3 – (3b)– 3(4a)(3b)[4a – 3b]
= (4a – 3b)3                                             [Using Identity VII]
= (4a – 3b)(4a – 3b)(4a – 3b)

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials
 

Question 9. Verify: (i) x3 + y3 = (x + y)(x– xy + y2)
 (ii) x– y= (x – y)(x2 + xy + y2)
 Solution:
(i) R.H.S. = (x + y)(x2 – xy + y2)
= x(x2 – xy + y2) + y(x– xy + y2)
= x3 – x2y + xy+ x2y – xy+ y
= x+ y3
= L.H.S.

(ii) R.H.S. = (x – y)(x2 + xy + y2)
= x(x2 + xy + y2) – y(x2 + xy + y2)
= x+ x2y + xy2 – x2y – xy2 – y3
= x– y3
= L.H.S.
 

Question 10. Factorise each of the following: (i) 27y3 + 125z
 (ii) 64m3 – 343n3
 REMEMBER
 I. x3 + y3 = (x + y)(x2 + y2 – xy) II. x3 – y= (x – y)(x+ y+ xy)
 Solution:
(i) Using the identity (x+ y3) = (x + y)(x2 – xy + y2),
we have 27y3 + 125z3 = (3y)3 + (5z)
= (3y + 5z)[(3y)– (3y)(5z) + (5z)2]
= (3y + 5z)(9y2 – 15yz + 25z2)

(ii) Using the identity x– y3 = (x – y)(x2 + xy + y2),
we have 64m3 – 343n3 = (4m)– (7n)3
= (4m – 7n)[(4m)2 + (4m)(7n) + (7n)2]
= (4m – 7n)(16m2 + 28mn + 49n2)
 

Question 11. Factorise 27x3 + y3 + z3 – 9xyz.
 Solution:
 REMEMBER

x+ y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z– xy – yz – zx)
We have 27x3 + y3 + z3 – 9xyz
= (3x)3 + (y)3 + (z)3 – 3(3x)(y)(z)
∴ Using the identity x3 + y3 + z3 – 3xyz
= (x + y + z)(x2 + y2 + z2 – xy – yz – zx),
we have  (3x)3 + (y)3 + (z)3 – 3(3x)(y)(z)
= (3x + y + z)[(3x)2 + y2 + z– (3x x y) – (y x z) – (z x 3x)]
= (3x + y + z)(9x2 + y2 + z2 – 3xy – yz – 3zx)
 

Question 12. Verify that x3 + y3 + z3 – 3xyz = NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials (x + y + z)[(x – y)2 + (y – z)2 + (z – x)2]
 Solution:
R.H.S. = NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials
(x + y + z)[(x – y)+ (y – z)+ (z – x)2]
NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials (x + y + z)[(x+ y2 – 2xy) + (y2 + z–2yz) + (z2 + x2 – 2xz)]
NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials (x + y + z)[x2 + y2 + y2 + z+ z+ x– 2xy – 2yz – 2zx]
NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials (x + y + z)[2(x+ y2 + z– xy – yz – zx)]
= 2 x NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials x (x + y + z)(x+ y+ z2 – xy – yz – zx)
= (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
= x+ y3 + z3 – 3xyz
= L.H.S.


Question 13. If x + y + z = 0, show that x3 + y+ z= 3xyz.
 Solution:
Since x + y + z = 0
∴ x + y = –z or (x + y)3 = (–z)3
or x+ y+ 3xy(x + y) = –z3
or x3 + y3 + 3xy(–z) = –z3                                 [∵ x + y = (–z)]
or x+ y3 – 3xyz = –z3
or (x3 + y3 + z3) – 3xyz = 0
or (x3 + y3 + z3) = 3xyz
Hence, if x + y + z = 0, then (x3 + y+ z3) = 3xyz.


Question 14. Without actually calculating the cubes, find the value of each of the following:
 (i) (–12)3 + (7)3 + (5)
 (ii) (28)+ (–15)+ (–13)3
 Solution: 
(i) (–12)+ (7)3 + (5)3 Let x = –12, y = 7 and z = 5
Then x + y + z = –12 + 7 + 5 = 0
We know that if x + y + z = 0, then x3 + y3 + z= 3xyz.
∴ (–12)3 + (7)3 + (5)3 = 3 [(–12)(7)(5)]                                       [∵ (–12) + 7 + 5 = 0]
= 3[–420]
= –1260
Thus, (–12)3 + (7)3 + (5)3 = –1260


(ii) (28)3 + (–15)3 + (–13)3
Let x = 28, y = –15 and z = –13
∴ x + y + z = 28 – 15 – 13 = 0
We know that if x + y + z = 0, then x3 + y3 + z3 = 3xyz.
∴ (28)3 + (–15)3 + (–13)3
= 3(28)(–15)(–13)                      [∵ 28 + (–15) + (–13) = 0]
= 3(5460)
= 16380
Thus, (28)3 + (–15)3 + (–13)3 = 16380


Question 15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

REMEMBER

Area of a rectangle = (Length) x (Breadth)
Solution: (i) Area = 25a2 – 35a + 12
We have to factorise the polynomial: 25a– 35a + 12
Splitting the co-efficient of a, we have –35 = (–20) + (–15)                [∵ 25 x 12 = 300 and (–20) x (–15)
= 300] 25a2 – 35a + 12
= 25a2 – 20a – 15a + 12
∴ = 5a(5a – 4) – 3(5a – 4) = (5a – 4)(5a – 3)
Thus, the possible length and breadth are (5a – 3) and (5a – 4).


(ii) Area = 35y2 + 13y – 12 We have to factorise the polynomial 35y+ 13y – 12.
Splitting the middle term, we get 13y = 28y – 15y                       [∵ 28 x (–15) = –420 and –12 x 35 = – 420]
∴ 35y2 + 13y – 12
= 35y2 + 28y – 15y – 12
= 7y(5y + 4) –3(5y + 4)
= (5y + 4)(7y – 3)
Thus, the possible length and breadth are (7y – 3) and (5y + 4).

Thus, the possible length and breadth are (7y – 3) and (5y + 4).
 

Question 16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below?

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

REMEMBER
Volume of a cuboid = (Length) x (Breadth) x (Height)
Solution: (i) Volume = 3x2 – 12x
On factorising 3x2 – 12x,
we have 3x2 – 12x = 3[x2 – 4x]
= 3 x [x(x – 4)] = 3 x x x (x – 4)
∴ The possible dimensions of the cuboid are: 3, x and (x – 4) units.

(ii) Volume = 12ky2 + 8ky – 20k
We have 12ky2 + 8ky – 20k = 4[3ky+ 2ky – 5k]
= 4[k(3y2 + 2y – 5)] = 4 x k x (3y+ 2y – 5) = 4k[3y2 – 3y + 5y – 5] (Splitting the middle term)
= 4k[3y(y – 1) + 5(y – 1)]
= 4k[(3y + 5)(y – 1)]
= 4k x (3y + 5) x (y – 1)
Thus, the possible dimensions are: 4k, (3y + 5) and (y – 1) units.

The document NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials is a part of Class 9 category.
All you need of Class 9 at this link: Class 9

Top Courses for Class 9

FAQs on NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

1. What is the definition of a polynomial?
Ans. A polynomial is a mathematical expression consisting of variables and coefficients, combined using the operations of addition, subtraction, multiplication, and non-negative integer exponents.
2. What is the degree of a polynomial?
Ans. The degree of a polynomial is the highest power of its variable. For example, the degree of the polynomial 3x^2 + 5x - 2 is 2.
3. How do you add or subtract polynomials?
Ans. To add or subtract polynomials, simply combine like terms. Like terms are terms that have the same variable and exponent. For example, to add 3x^2 + 5x - 2 and 2x^2 - 4x + 1, we can combine the x^2 terms (3x^2 + 2x^2 = 5x^2), the x terms (5x - 4x = x), and the constant terms (-2 + 1 = -1), giving us the polynomial 5x^2 + x - 1.
4. How do you find the zeros of a polynomial?
Ans. To find the zeros (or roots) of a polynomial, set the polynomial equal to zero and solve for the variable. For example, to find the zeros of the polynomial x^2 - 4x + 3, we can set it equal to zero (x^2 - 4x + 3 = 0) and use factoring or the quadratic formula to solve for x. The zeros of this polynomial are x = 1 and x = 3.
5. What are some practical applications of polynomials?
Ans. Polynomials have many practical applications in fields such as engineering, physics, and computer science. They can be used to model real-world phenomena such as population growth, economic trends, and physical motion. They can also be used in computer graphics to render curves and shapes, and in cryptography to encrypt and decrypt messages.
Download as PDF
Explore Courses for Class 9 exam

Top Courses for Class 9

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

,

Objective type Questions

,

Summary

,

Viva Questions

,

mock tests for examination

,

shortcuts and tricks

,

Free

,

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

,

pdf

,

Exam

,

NCERT Solutions for Class 8 Maths Chapter 2 - Ex 2.5 Polynomials

,

video lectures

,

Important questions

,

past year papers

,

study material

,

Sample Paper

,

ppt

,

Extra Questions

,

practice quizzes

,

Previous Year Questions with Solutions

,

MCQs

,

Semester Notes

;