Download, print and study this document offline |
Page 1 Q u e s t i o n : 1 7 9 Factorize each of the following quadratic polynomials by using the method of completing the square: p 2 + 6p + 8 S o l u t i o n : p2+6p+8=p2+6p+622-622+8 [Adding and subtracting 622, that is, 32]=p2+6p+32-32+8=p2+2×p×3+32-9+8=p2+2×p×3+32-1=(p+3)2-12 [Completing the square]=[(p+3)-1] =(p+3-1)(p+3+1)=(p+2)(p+4) Q u e s t i o n : 1 8 0 Factorize each of the following quadratic polynomials by using the method of completing the square: q2 - 10q + 21 S o l u t i o n : q2-10q+21=q2-10q+1022-1022+21 [Adding and subtracting 1022, that is, 52]=q2-2×q×5+52-52+21=(q-5)2-4 [Completing the square]=(q-5)2-22 =[(q-5)-2][(q-5)+2]=(q =(q-7)(q-3) Q u e s t i o n : 1 8 1 Factorize each of the following quadratic polynomials by using the method of completing the square: 4y 2 + 12y + 5 S o l u t i o n : 4y2+12y+5=4(y2+3y+54) [Making the coefficient of y2=1]=4[y2+3y+322-322+54] [Adding and subtracting 322]=4[(y+32)2-94+54]=4[(y+32)2-12] =4[(y+32)-1][(y+32)+1]=4(y+32-1)(y+32+1)=4(y+12)(y+52)=(2y+1)(2y+5) Q u e s t i o n : 1 8 2 Factorize each of the following quadratic polynomials by using the method of completing the square: p 2 + 6p - 16 S o l u t i o n : p2+6p-16=p2+6p+622-622-16 [Adding and subtracting 622, that is, 32]=p2+6p+32-9-16=(p+3)2-25 [Completing the square]=(p+3)2-52=[(p+3)-5][(p+3)+5]=(p+3-5)(p+3+5 =(p-2)(p+8) Q u e s t i o n : 1 8 3 Factorize each of the following quadratic polynomials by using the method of completing the square: x 2 + 12x + 20 S o l u t i o n : x2+12x+20=x2+12x+1222-1222+20 [Adding and subtracting 1222, that is, 62]=x2+12x+62-62+20=(x+6)2-16 [Completing the square]=(x+6)2-42=[(x+6)-4][(x+6 =(x+6-4)(x+6+4)=(x+2)(x+10) Q u e s t i o n : 1 8 4 Factorize each of the following quadratic polynomials by using the method of completing the square: a 2 - 14a - 51 S o l u t i o n : a2-14a-51=a2-14a+1422-1422-51 [Adding and subtracting 1422, that is, 72]=a2-14a+72-72-51=(a-7)2-100 [Completing the square]=(a-7)2-102 =[(a-7)-10][(a-7)+10]=(a =(a-17)(a+3) Q u e s t i o n : 1 8 5 Factorize each of the following quadratic polynomials by using the method of completing the square: a 2 + 2a - 3 S o l u t i o n : a2+2a-3=a2+2a+222-222-3 [Adding and subtracting 222, that is, 12]=a2+2a+12-12-3=(a+1)2-4 [Completing the square]=(a+1)2-22=[(a+1)-2][(a+1)+2]=(a+1-2)(a+1+2)= Q u e s t i o n : 1 8 6 Factorize each of the following quadratic polynomials by using the method of completing the square: 4x 2 - 12x + 5 S o l u t i o n : 4x2-12x+5=4(x2-3x+54) [Making the coefficient of x2=1]=4[x2-3x+322-322+54] [Adding and subtracting 322]=4[(x-32)2-94+54] [Completing th =4[(x-32)2-12] =4[(x-32)-1][(x-32)+1]=4(x-32-1)(x-32+1)=4(x-52)(x-12)=(2x-5)(2x-1) Q u e s t i o n : 1 8 7 Factorize each of the following quadratic polynomials by using the method of completing the square: y 2 - 7y + 12 S o l u t i o n : y2-7y+12=y2-7y+722-722+12 [Adding and subtracting 722]=(y-72)2-494+484 [Completing the square]=(y-72)2-14 =(y-72)2-122 =[(y-72)-12][(y-72)+12]=(y-72-12)(y-72+12)=(y-4 Page 2 Q u e s t i o n : 1 7 9 Factorize each of the following quadratic polynomials by using the method of completing the square: p 2 + 6p + 8 S o l u t i o n : p2+6p+8=p2+6p+622-622+8 [Adding and subtracting 622, that is, 32]=p2+6p+32-32+8=p2+2×p×3+32-9+8=p2+2×p×3+32-1=(p+3)2-12 [Completing the square]=[(p+3)-1] =(p+3-1)(p+3+1)=(p+2)(p+4) Q u e s t i o n : 1 8 0 Factorize each of the following quadratic polynomials by using the method of completing the square: q2 - 10q + 21 S o l u t i o n : q2-10q+21=q2-10q+1022-1022+21 [Adding and subtracting 1022, that is, 52]=q2-2×q×5+52-52+21=(q-5)2-4 [Completing the square]=(q-5)2-22 =[(q-5)-2][(q-5)+2]=(q =(q-7)(q-3) Q u e s t i o n : 1 8 1 Factorize each of the following quadratic polynomials by using the method of completing the square: 4y 2 + 12y + 5 S o l u t i o n : 4y2+12y+5=4(y2+3y+54) [Making the coefficient of y2=1]=4[y2+3y+322-322+54] [Adding and subtracting 322]=4[(y+32)2-94+54]=4[(y+32)2-12] =4[(y+32)-1][(y+32)+1]=4(y+32-1)(y+32+1)=4(y+12)(y+52)=(2y+1)(2y+5) Q u e s t i o n : 1 8 2 Factorize each of the following quadratic polynomials by using the method of completing the square: p 2 + 6p - 16 S o l u t i o n : p2+6p-16=p2+6p+622-622-16 [Adding and subtracting 622, that is, 32]=p2+6p+32-9-16=(p+3)2-25 [Completing the square]=(p+3)2-52=[(p+3)-5][(p+3)+5]=(p+3-5)(p+3+5 =(p-2)(p+8) Q u e s t i o n : 1 8 3 Factorize each of the following quadratic polynomials by using the method of completing the square: x 2 + 12x + 20 S o l u t i o n : x2+12x+20=x2+12x+1222-1222+20 [Adding and subtracting 1222, that is, 62]=x2+12x+62-62+20=(x+6)2-16 [Completing the square]=(x+6)2-42=[(x+6)-4][(x+6 =(x+6-4)(x+6+4)=(x+2)(x+10) Q u e s t i o n : 1 8 4 Factorize each of the following quadratic polynomials by using the method of completing the square: a 2 - 14a - 51 S o l u t i o n : a2-14a-51=a2-14a+1422-1422-51 [Adding and subtracting 1422, that is, 72]=a2-14a+72-72-51=(a-7)2-100 [Completing the square]=(a-7)2-102 =[(a-7)-10][(a-7)+10]=(a =(a-17)(a+3) Q u e s t i o n : 1 8 5 Factorize each of the following quadratic polynomials by using the method of completing the square: a 2 + 2a - 3 S o l u t i o n : a2+2a-3=a2+2a+222-222-3 [Adding and subtracting 222, that is, 12]=a2+2a+12-12-3=(a+1)2-4 [Completing the square]=(a+1)2-22=[(a+1)-2][(a+1)+2]=(a+1-2)(a+1+2)= Q u e s t i o n : 1 8 6 Factorize each of the following quadratic polynomials by using the method of completing the square: 4x 2 - 12x + 5 S o l u t i o n : 4x2-12x+5=4(x2-3x+54) [Making the coefficient of x2=1]=4[x2-3x+322-322+54] [Adding and subtracting 322]=4[(x-32)2-94+54] [Completing th =4[(x-32)2-12] =4[(x-32)-1][(x-32)+1]=4(x-32-1)(x-32+1)=4(x-52)(x-12)=(2x-5)(2x-1) Q u e s t i o n : 1 8 7 Factorize each of the following quadratic polynomials by using the method of completing the square: y 2 - 7y + 12 S o l u t i o n : y2-7y+12=y2-7y+722-722+12 [Adding and subtracting 722]=(y-72)2-494+484 [Completing the square]=(y-72)2-14 =(y-72)2-122 =[(y-72)-12][(y-72)+12]=(y-72-12)(y-72+12)=(y-4 Q u e s t i o n : 1 8 8 Factorize each of the following quadratic polynomials by using the method of completing the square: z 2 - 4z - 12 S o l u t i o n : z2-4z-12=z2-4z+422-422-12 [Adding and subtracting 422, that is, 22]=z2-4z+22-22-12=(z-2)2-16 [Completing the square]=(z-2)2-42=[(z-2)-4][(z-2)+4]=(z-6)(z+2) Processing math: 56% Contrib /a11y/accessibility-menu.jsRead More
79 videos|408 docs|31 tests
|
|
Explore Courses for Class 8 exam
|