Mechanical Engineering Exam  >  Mechanical Engineering Notes  >  Theory of Machines (TOM)  >  Features of Vibrations & Overview of Issues in Controlling Vibrations

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering PDF Download

5.1 Overview of Vibrations

5.1.1 Examples of practical vibration problems

Vibration is a continuous cyclic motion of a structure or a component.

Generally, engineers try to avoid vibrations, because vibrations have a number of unpleasant effects:

  • Cyclic motion implies cyclic forces. Cyclic forces are very damaging to materials.
  • Even modest levels of vibration can cause extreme discomfort;
  • Vibrations generally lead to a loss of precision in controlling machinery.

Examples where vibration suppression is an issue include:

Structural vibrations.  Most buildings are mounted on top of special rubber pads, which are intended to isolate the building from ground vibrations.  The figure on the right shows vibration isolators being installed under the floor of a building during construction

No vibrations course is complete without a mention of the Tacoma Narrows suspension bridge.  This bridge, constructed in the 1940s, was at the time the longest suspension bridge in the world.  Because it was a new design, it suffered from an unforseen source of vibrations.  In high wind, the roadway would exhibit violent torsional vibrations, as shown in the picture below.

To the credit of the designers, the bridge survived for an amazingly long time before it finally failed.  It is thought that the vibrations were a form of self-excited vibration known as `flutter,’ or ‘galloping’  A similar form of vibration is known to occur in aircraft wings.  Interestingly, modern cable stayed bridges that also suffer from a new vibration problem: the cables are very lightly damped and can vibrate badly in high winds (this is a resonance problem, not flutter). Some bridge designs go as far as to incorporate active vibration suppression systems in their cables.

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical EngineeringFeatures of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

Vehicle suspension systems are familiar to everyone, but continue to evolve as engineers work to improve vehicle handling and ride. A radical new approach to suspension design emerged in 2003 when a research group led by Malcolm Smith at Cambridge University invented a new mechanical suspension element they called an ‘inerter’.   This device can be thought of as a sort of generalized spring, but instead of exerting a force proportional to the relative displacement of its two ends, the inerter exerts a force that is proportional to the relative acceleration of its two ends.  An actual realization is shown in the figure. The device was adopted in secret by the McLaren Formula 1 racing team in 2005 (they called it the ‘J damper’, and a scandal erupted in Formula 1 racing when the Renault team managed to steal drawings for the device, but were unable to work out what it does.   The patent for the device has now been licensed Penske and looks to become a standard element in formula 1 racing.  It is only a matter of time before it appears on vehicles available to the rest of us.

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

Precision Machinery: The picture on the right shows one example of a precision instrument. It is essential to isolate electron microscopes from vibrations. A typical transmission electron microscope is designed to resolve features of materials down to atomic length scales.  If the specimen vibrates by more than a few atomic spacings, it will be impossible to see!  This is one reason that electron microscopes are always located in the basement Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering the basement of a building vibrates much less than the upper floors.

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

Here is another precision instrument that is very sensitive to vibrations.

The picture shows features of a typical hard disk drive.  It is particularly important to prevent vibrations in the disk stack assembly and in the disk head positioner, since any relative motion between these two components will make it impossible to read data. The spinning disk stack assembly has some very interesting vibration characteristics (which fortunately for you, is beyond the scope of this course).

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

Vibrations are not always undesirable, however.  On occasion, they can be put to good use.  Examples of beneficial applications of vibrations include ultrasonic probes, both for medical application and for nondestructive testing. The picture shows a medical application of ultrasound: it is an image of someone’s colon.  This type of instrument can resolve features down to a fraction of a millimeter, and is infinitely preferable to exploratory surgery.  Ultrasound is also used to detect cracks in aircraft and structures.

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

Musical instruments and loudspeakers are a second example of systems which put vibrations to good use.  Finally, most mechanical clocks use vibrations to measure time. 

5.1.2 Vibration Measurement

When faced with a vibration problem, engineers generally start by making some measurements to try to isolate the cause of the problem. There are two common ways to measure vibrations:

1. An accelerometer is a small electro-mechanical device that gives an electrical signal proportional to its acceleration. The picture shows a typical 3 axis accelerometer.

2. A displacement transducer is similar to an accelerometer, but gives an electrical signal proportional to its displacement.

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

Displacement transducers are generally preferable if you need to measure low frequency vibrations; accelerometers behave better at high frequencies.

The most common procedure is to mount three accelerometers at a point on the vibrating structure, so as to measure accelerations in three mutually perpendicular directions.  The velocity and displacement are then deduced by integrating the accelerations.

5.1.3 Features of a Typical Vibration Response

The picture below shows a typical signal that you might record using an accelerometer or displacement transducer.

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

  • The signal is often (although not always) periodic: that is to say, it repeats itself at fixed intervals of time. Vibrations that do not repeat themselves in this way are said to be random. All the systems we consider in this course will exhibit periodic vibrations.
  • The PERIOD of the signal, T, is the time required for one complete cycle of oscillation, as shown in the picture.
  • The FREQUENCY of the signal, f, is the number of cycles of oscillation per second. Cycles per second is often given the name Hertz: thus, a signal which repeats 100 times per second is said to oscillate at 100 Hertz.
  • The ANGULAR FREQUENCY of the signal,ω , is defined as ω = 2πf . We specify angular frequency in radians per second. Thus, a signal that oscillates at 100 Hz has angular frequency 200π radians per second.
  • Period, frequency and angular frequency are related by
  • Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering
  • The PEAK-TO-PEAK AMPLITUDE of the signal, A, is the difference between its maximum value and its minimum value, as shown in the picture
  • The AMPLITUDE of the signal is generally taken to mean half its peak to peak amplitude. Engineers sometimes use amplitude as an abbreviation for peak to peak amplitude, however, so be careful
  • The ROOT MEAN SQUARE AMPLITUDE or RMS amplitude is defined as

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

5.1.4 Harmonic Oscillations

Harmonic oscillations are a particularly simple form of vibration response. Consider the spring-mass system shown below (you will only see the spring-mass system if your browser supports Java). If the spring is perturbed from its static equilibrium position, it vibrates (press `start’ to watch the vibration). We will analyze the motion of the spring mass system soon. We will find that the displacement of the mass from its static equilibrium position, x , has the form

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

Here, X0 is the amplitude of the displacement, ω is the frequency of oscillations in radians per second, and φ (in radians) is known as the `phase’ of the vibration. Vibrations of this form are said to be Harmonic.

Typical values for amplitude and frequency are listed in the table below

 

Frequency /Hz

Amplitude/mm

Atomic Vibration

1012

10-7

Threshold of human perception

1-8

10-2

Machinery and building vibes

10-100

10-2 -1

Swaying of tall buildings

1-5

10-1000


We can also express the displacement in terms of its period of oscillation T

  Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

The velocity v and acceleration a of the mass follow as

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

Here, V0 is the amplitude of the velocity, and A0 is the amplitude of the acceleration. Note the simple relationships between acceleration, velocity and displacement amplitudes.

Experiment with the until you feel comfortable with the concepts of amplitude, frequency, period and phase of a signal.

Surprisingly, many complex engineering systems behave just like the spring mass system we are looking at here. To describe the behavior of the system, then, we need to know three things (in order of importance):

(1) The frequency (or period) of the vibrations
(2) The amplitude of the vibrations
(3) Occasionally, we might be interested in the phase, but this is rare.

So, our next problem is to find a way to calculate these three quantities for engineering systems.

We will do this in stages. First, we will analyze a number of freely vibrating, conservative systems. Second, we will examine free vibrations in a dissipative system, to show the influence of energy losses in a mechanical system. Finally, we will discuss the behavior of mechanical systems when they are subjected to oscillating forces.

The document Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering is a part of the Mechanical Engineering Course Theory of Machines (TOM).
All you need of Mechanical Engineering at this link: Mechanical Engineering
87 videos|43 docs|29 tests

FAQs on Features of Vibrations & Overview of Issues in Controlling Vibrations - Theory of Machines (TOM) - Mechanical Engineering

1. What are the key features of vibrations?
Ans. Vibrations can be characterized by the following features: - Frequency: The number of oscillations per unit time. - Amplitude: The maximum displacement of a vibrating object from its equilibrium position. - Period: The time taken to complete one cycle of vibration. - Damping: The gradual reduction of vibration amplitude over time. - Resonance: The phenomenon where vibrations reach maximum amplitude due to the natural frequency of the system.
2. How can vibrations be controlled?
Ans. Vibrations can be controlled through various methods, including: - Passive damping: Using materials or devices to absorb or dissipate vibrational energy. - Active control: Using sensors and actuators to actively counteract vibrations in real-time. - Structural modifications: Altering the design or adding reinforcements to reduce resonance or increase stiffness. - Isolation: Physically separating the vibrating source from other components to minimize transmission. - Tuning: Adjusting the natural frequency of the system to avoid resonance.
3. What are some common issues in controlling vibrations?
Ans. Some common issues in controlling vibrations include: - Lack of accuracy: Achieving precise control over vibrations can be challenging due to various factors such as system complexity and external disturbances. - Cost: Implementing vibration control measures can be expensive, especially in large-scale applications or complex systems. - Trade-offs: Some control methods may introduce trade-offs, such as increased weight or reduced system flexibility. - Maintenance: Control systems may require regular calibration and maintenance to ensure their effectiveness. - Environmental impact: Certain vibration control measures, such as passive damping materials, may have environmental implications during their production or disposal.
4. How does resonance affect vibrations?
Ans. Resonance occurs when the frequency of an external force matches the natural frequency of a vibrating system. This leads to a significant increase in vibration amplitude, which can cause unwanted and potentially damaging effects. Resonance can result in excessive vibrations, increased stress on components, decreased system performance, and even structural failure. It is important to avoid or mitigate resonance through proper design, control measures, and frequency analysis.
5. What are some practical applications of vibration control?
Ans. Vibration control techniques find applications in various fields, including: - Automotive industry: Controlling vibrations in vehicles improves ride comfort, reduces noise, and enhances vehicle stability. - Aerospace engineering: Vibration control is crucial in aircraft to minimize structural fatigue, ensure passenger comfort, and maintain instrument accuracy. - Civil engineering: In buildings and bridges, vibration control helps reduce structural damage, improve occupant comfort, and mitigate the effects of earthquakes or wind loads. - Manufacturing: Vibration control is essential in precision machining to enhance product quality and extend tool life. - Medical field: Vibration control is employed in medical equipment and procedures to minimize patient discomfort, improve imaging quality, and enhance surgical precision.
87 videos|43 docs|29 tests
Download as PDF

Top Courses for Mechanical Engineering

Related Searches

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

,

Semester Notes

,

pdf

,

Extra Questions

,

past year papers

,

Viva Questions

,

practice quizzes

,

Exam

,

study material

,

MCQs

,

Objective type Questions

,

Sample Paper

,

video lectures

,

Previous Year Questions with Solutions

,

Important questions

,

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

,

mock tests for examination

,

Free

,

Summary

,

Features of Vibrations & Overview of Issues in Controlling Vibrations | Theory of Machines (TOM) - Mechanical Engineering

,

ppt

,

shortcuts and tricks

;