JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Flashcards: Definite Integrals

Flashcards: Definite Integrals | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


 
 
 
 
 
DEFINITE INTEGRAL 
Here we shall define integration as a process of summation or define integral as the limit of a sum. Then 
we discuss some properties of definite integral. The concept of definite integral is then used to find the 
area enclosed by certain curves. 
  
Page 2


 
 
 
 
 
DEFINITE INTEGRAL 
Here we shall define integration as a process of summation or define integral as the limit of a sum. Then 
we discuss some properties of definite integral. The concept of definite integral is then used to find the 
area enclosed by certain curves. 
  
 
 
 
 
 
Fundamental theorem of calculus 
Let ?? ( ?? ) be a continuous real valued function defined on [ ?? , ?? ] such that ? ?? ( ?? ) ???? = ?? ( ?? ) + ?? . 
Then ?
?? ?? ? ?? ( ?? ) ???? = ?? ( ?? ) - ?? ( ?? ), called definite integral of ?? ( ?? ) in [ ?? , ?? ]. 
  
Page 3


 
 
 
 
 
DEFINITE INTEGRAL 
Here we shall define integration as a process of summation or define integral as the limit of a sum. Then 
we discuss some properties of definite integral. The concept of definite integral is then used to find the 
area enclosed by certain curves. 
  
 
 
 
 
 
Fundamental theorem of calculus 
Let ?? ( ?? ) be a continuous real valued function defined on [ ?? , ?? ] such that ? ?? ( ?? ) ???? = ?? ( ?? ) + ?? . 
Then ?
?? ?? ? ?? ( ?? ) ???? = ?? ( ?? ) - ?? ( ?? ), called definite integral of ?? ( ?? ) in [ ?? , ?? ]. 
  
 
 
 
 
Remark: 
1 If ?? ( ?? ) is discontinuous at ?? = ?? and continuous at ?? = ?? then ?
?? ?? ? ?? ( ?? )???? = ?? ( ?? ) - l im
?? ? ?? + ? ?? ( ?? ) 
2 If ?? ( ?? ) is discontinuous at ?? = ?? and continuous at ?? = ?? then ?
?? ?? ? ?? ( ?? )???? = l im
?? ? ?? - ? ?? ( ?? ) - ?? ( ?? ) 
  
Page 4


 
 
 
 
 
DEFINITE INTEGRAL 
Here we shall define integration as a process of summation or define integral as the limit of a sum. Then 
we discuss some properties of definite integral. The concept of definite integral is then used to find the 
area enclosed by certain curves. 
  
 
 
 
 
 
Fundamental theorem of calculus 
Let ?? ( ?? ) be a continuous real valued function defined on [ ?? , ?? ] such that ? ?? ( ?? ) ???? = ?? ( ?? ) + ?? . 
Then ?
?? ?? ? ?? ( ?? ) ???? = ?? ( ?? ) - ?? ( ?? ), called definite integral of ?? ( ?? ) in [ ?? , ?? ]. 
  
 
 
 
 
Remark: 
1 If ?? ( ?? ) is discontinuous at ?? = ?? and continuous at ?? = ?? then ?
?? ?? ? ?? ( ?? )???? = ?? ( ?? ) - l im
?? ? ?? + ? ?? ( ?? ) 
2 If ?? ( ?? ) is discontinuous at ?? = ?? and continuous at ?? = ?? then ?
?? ?? ? ?? ( ?? )???? = l im
?? ? ?? - ? ?? ( ?? ) - ?? ( ?? ) 
  
 
 
 
 
Remark: 
3. If ?? ( ?? ) is discontinuous at ?? = ?? and ?? = ?? then ?
?? ?? ? ?? ( ?? ) ???? = l im
?? ? 0
? ?
?? + ?? ?? - ?? ? ?? ( ?? )???? or l im
?? ? ?? - ? ?? ( ?? ) -
l im
?? ? ?? + ? ?? ( ?? ) 
4. If ?? ( ?? ) is discontinuous at ?? = ?? ( ?? < ?? < ?? ) then ?
?? ?? ? ?? ( ?? )???? = l im
?? ? 0
? ?
?? ?? - ?? ? ?? ( ?? )???? + l im
?? ? 0
? ?
?? + ?? ?? ? ?? ( ?? ) ???? 
  
Page 5


 
 
 
 
 
DEFINITE INTEGRAL 
Here we shall define integration as a process of summation or define integral as the limit of a sum. Then 
we discuss some properties of definite integral. The concept of definite integral is then used to find the 
area enclosed by certain curves. 
  
 
 
 
 
 
Fundamental theorem of calculus 
Let ?? ( ?? ) be a continuous real valued function defined on [ ?? , ?? ] such that ? ?? ( ?? ) ???? = ?? ( ?? ) + ?? . 
Then ?
?? ?? ? ?? ( ?? ) ???? = ?? ( ?? ) - ?? ( ?? ), called definite integral of ?? ( ?? ) in [ ?? , ?? ]. 
  
 
 
 
 
Remark: 
1 If ?? ( ?? ) is discontinuous at ?? = ?? and continuous at ?? = ?? then ?
?? ?? ? ?? ( ?? )???? = ?? ( ?? ) - l im
?? ? ?? + ? ?? ( ?? ) 
2 If ?? ( ?? ) is discontinuous at ?? = ?? and continuous at ?? = ?? then ?
?? ?? ? ?? ( ?? )???? = l im
?? ? ?? - ? ?? ( ?? ) - ?? ( ?? ) 
  
 
 
 
 
Remark: 
3. If ?? ( ?? ) is discontinuous at ?? = ?? and ?? = ?? then ?
?? ?? ? ?? ( ?? ) ???? = l im
?? ? 0
? ?
?? + ?? ?? - ?? ? ?? ( ?? )???? or l im
?? ? ?? - ? ?? ( ?? ) -
l im
?? ? ?? + ? ?? ( ?? ) 
4. If ?? ( ?? ) is discontinuous at ?? = ?? ( ?? < ?? < ?? ) then ?
?? ?? ? ?? ( ?? )???? = l im
?? ? 0
? ?
?? ?? - ?? ? ?? ( ?? )???? + l im
?? ? 0
? ?
?? + ?? ?? ? ?? ( ?? ) ???? 
  
 
 
 
 
 
 
Note that even if ?? ( ?? ) is not defined at ?? = ?? or ?? = ?? or at both, ?
?? ?? ? ?? ( ?? )???? can be evaluated. ?? and ?? 
are called lower and upper limits of integration respectively. If we make change in variable (i.e. 
substitution) then limit of integration should be changed accordingly. 
  
Read More
209 videos|443 docs|143 tests

Top Courses for JEE

209 videos|443 docs|143 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Objective type Questions

,

shortcuts and tricks

,

pdf

,

Previous Year Questions with Solutions

,

Extra Questions

,

video lectures

,

MCQs

,

Free

,

Flashcards: Definite Integrals | Mathematics (Maths) for JEE Main & Advanced

,

practice quizzes

,

Summary

,

past year papers

,

ppt

,

Important questions

,

Sample Paper

,

study material

,

Flashcards: Definite Integrals | Mathematics (Maths) for JEE Main & Advanced

,

mock tests for examination

,

Flashcards: Definite Integrals | Mathematics (Maths) for JEE Main & Advanced

,

Exam

,

Semester Notes

,

Viva Questions

;