Mechanical Engineering Exam  >  Mechanical Engineering Notes  >  Thermodynamics  >  Formula Sheet: Applied Thermodynamics

Formula Sheet: Applied Thermodynamics | Thermodynamics - Mechanical Engineering PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


   
 
 
Thermodynamics 
 
Symbol/Formula Parameter 
M Molar mass  (M/ ?) 
m Mass (M) 
M
m
n ? 
Number of moles ( ?) 
E Energy or general extensive property 
m
E
e ? 
Specific molar energy (energy per unit mass) or general extensive 
property per unit mass 
eM
n
E
e ? ? 
Specific energy (energy per unit mole) or general extensive 
property per unit mole 
P Pressure (ML
-1
T
-2
) 
V Volume (L
3
);  
Specific volume or volume per unit mass, v (L
3
M
-1
) and the volume 
per unit mole v (L
3
?
-1
) 
T Temperature ( T) 
? ? Density (ML
-3
); ? = 1/v. 
x Quality 
U Thermodynamic internal energy (ML
2
T
-2
);  
Internal energy per unit mass, u (L
2
T
-2
), and the internal energy per 
unit mole, u (ML
2
T
-2
?
-1
) 
H = U + PV Thermodynamic enthalpy (ML
2
T
-2
);  
Enthalpy per unit mass, h = u + Pv (dimensions: L
2
T
-2
) and the 
internal energy per unit mole h (ML
2
T
-2
?
-1
) 
S Entropy (ML
2
T
-2
T
-1
);  
Entropy per unit mass, s(L
2
T
-2
T
-1
) and the internal energy per unit 
mole s (ML
2
T
-2
T
-1
?
-1
) 
W Work (ML
2
T
-2
) 
Q Heat transfer (ML
2
T
-2
) 
u
W
?
: 
The useful work rate or mechanical power (ML
2
T
-3
) 
m ? : The mass flow rate (MT
-1
) 
Page 2


   
 
 
Thermodynamics 
 
Symbol/Formula Parameter 
M Molar mass  (M/ ?) 
m Mass (M) 
M
m
n ? 
Number of moles ( ?) 
E Energy or general extensive property 
m
E
e ? 
Specific molar energy (energy per unit mass) or general extensive 
property per unit mass 
eM
n
E
e ? ? 
Specific energy (energy per unit mole) or general extensive 
property per unit mole 
P Pressure (ML
-1
T
-2
) 
V Volume (L
3
);  
Specific volume or volume per unit mass, v (L
3
M
-1
) and the volume 
per unit mole v (L
3
?
-1
) 
T Temperature ( T) 
? ? Density (ML
-3
); ? = 1/v. 
x Quality 
U Thermodynamic internal energy (ML
2
T
-2
);  
Internal energy per unit mass, u (L
2
T
-2
), and the internal energy per 
unit mole, u (ML
2
T
-2
?
-1
) 
H = U + PV Thermodynamic enthalpy (ML
2
T
-2
);  
Enthalpy per unit mass, h = u + Pv (dimensions: L
2
T
-2
) and the 
internal energy per unit mole h (ML
2
T
-2
?
-1
) 
S Entropy (ML
2
T
-2
T
-1
);  
Entropy per unit mass, s(L
2
T
-2
T
-1
) and the internal energy per unit 
mole s (ML
2
T
-2
T
-1
?
-1
) 
W Work (ML
2
T
-2
) 
Q Heat transfer (ML
2
T
-2
) 
u
W
?
: 
The useful work rate or mechanical power (ML
2
T
-3
) 
m ? : The mass flow rate (MT
-1
) 
   
 
 
2
2
V
?
: 
The kinetic energy per unit mass (L
2
T
-2
) 
gz: The potential energy per unit mass (L
2
T
-2
) 
E
tot
: 
The total energy = m(u + 
2
2
V
?
 + gz)  (ML
2
T
-2
) 
Q
?
: 
The heat transfer rate (ML
2
T
-3
) 
dE
cv
dt
  : 
The rate of change of energy for the control volume.(ml
2
t
-3
) 
M Molar mass  (M/ ?) 
m Mass (M) 
M
m
n ? 
Number of moles ( ?) 
E Energy or general extensive property 
m
E
e ? 
Specific molar energy (energy per unit mass) or general extensive 
property per unit mass 
eM
n
E
e ? ? 
Specific energy (energy per unit mole) or general extensive 
property per unit mole 
P Pressure (ML
-1
T
-2
) 
V Volume (L
3
);  
Specific volume or volume per unit mass, v (L
3
M
-1
) and the volume 
per unit mole v (L
3
?
-1
) 
T Temperature ( T) 
? ? Density (ML
-3
); ? = 1/v. 
x Quality 
U Thermodynamic internal energy (ML
2
T
-2
);  
Internal energy per unit mass, u (L
2
T
-2
), and the internal energy per 
unit mole, u (ML
2
T
-2
?
-1
) 
H = U + PV Thermodynamic enthalpy (ML
2
T
-2
); we also have the enthalpy per 
unit mass, h = u + Pv (dimensions: L
2
T
-2
) and the internal energy 
per unit mole h (ML
2
T
-2
?
-1
) 
S Entropy (ML
2
T
-2
T
-1
);  
Entropy per unit mass, s(L
2
T
-2
T
-1
) and the internal energy per unit 
mole s (ML
2
T
-2
T
-1
?
-1
) 
Page 3


   
 
 
Thermodynamics 
 
Symbol/Formula Parameter 
M Molar mass  (M/ ?) 
m Mass (M) 
M
m
n ? 
Number of moles ( ?) 
E Energy or general extensive property 
m
E
e ? 
Specific molar energy (energy per unit mass) or general extensive 
property per unit mass 
eM
n
E
e ? ? 
Specific energy (energy per unit mole) or general extensive 
property per unit mole 
P Pressure (ML
-1
T
-2
) 
V Volume (L
3
);  
Specific volume or volume per unit mass, v (L
3
M
-1
) and the volume 
per unit mole v (L
3
?
-1
) 
T Temperature ( T) 
? ? Density (ML
-3
); ? = 1/v. 
x Quality 
U Thermodynamic internal energy (ML
2
T
-2
);  
Internal energy per unit mass, u (L
2
T
-2
), and the internal energy per 
unit mole, u (ML
2
T
-2
?
-1
) 
H = U + PV Thermodynamic enthalpy (ML
2
T
-2
);  
Enthalpy per unit mass, h = u + Pv (dimensions: L
2
T
-2
) and the 
internal energy per unit mole h (ML
2
T
-2
?
-1
) 
S Entropy (ML
2
T
-2
T
-1
);  
Entropy per unit mass, s(L
2
T
-2
T
-1
) and the internal energy per unit 
mole s (ML
2
T
-2
T
-1
?
-1
) 
W Work (ML
2
T
-2
) 
Q Heat transfer (ML
2
T
-2
) 
u
W
?
: 
The useful work rate or mechanical power (ML
2
T
-3
) 
m ? : The mass flow rate (MT
-1
) 
   
 
 
2
2
V
?
: 
The kinetic energy per unit mass (L
2
T
-2
) 
gz: The potential energy per unit mass (L
2
T
-2
) 
E
tot
: 
The total energy = m(u + 
2
2
V
?
 + gz)  (ML
2
T
-2
) 
Q
?
: 
The heat transfer rate (ML
2
T
-3
) 
dE
cv
dt
  : 
The rate of change of energy for the control volume.(ml
2
t
-3
) 
M Molar mass  (M/ ?) 
m Mass (M) 
M
m
n ? 
Number of moles ( ?) 
E Energy or general extensive property 
m
E
e ? 
Specific molar energy (energy per unit mass) or general extensive 
property per unit mass 
eM
n
E
e ? ? 
Specific energy (energy per unit mole) or general extensive 
property per unit mole 
P Pressure (ML
-1
T
-2
) 
V Volume (L
3
);  
Specific volume or volume per unit mass, v (L
3
M
-1
) and the volume 
per unit mole v (L
3
?
-1
) 
T Temperature ( T) 
? ? Density (ML
-3
); ? = 1/v. 
x Quality 
U Thermodynamic internal energy (ML
2
T
-2
);  
Internal energy per unit mass, u (L
2
T
-2
), and the internal energy per 
unit mole, u (ML
2
T
-2
?
-1
) 
H = U + PV Thermodynamic enthalpy (ML
2
T
-2
); we also have the enthalpy per 
unit mass, h = u + Pv (dimensions: L
2
T
-2
) and the internal energy 
per unit mole h (ML
2
T
-2
?
-1
) 
S Entropy (ML
2
T
-2
T
-1
);  
Entropy per unit mass, s(L
2
T
-2
T
-1
) and the internal energy per unit 
mole s (ML
2
T
-2
T
-1
?
-1
) 
   
 
 
W Work (ML
2
T
-2
) 
Q Heat transfer (ML
2
T
-2
) 
u
W
?
: 
The useful work rate or mechanical power (ML
2
T
-3
) 
m ? : The mass flow rate (MT
-1
) 
2
2
V
?
: 
The kinetic energy per unit mass (L
2
T
-2
) 
gz: The potential energy per unit mass (L
2
T
-2
) 
E
tot
: 
The total energy = m(u + 
2
2
V
?
 + gz)  (ML
2
T
-2
) 
Q
?
: 
The heat transfer rate (ML
2
T
-3
) 
dE
cv
dt
  : 
The rate of change of energy for the control volume.(ml
2
t
-3
) 
M Molar mass  (M/ ?) 
m Mass (M) 
M
m
n ? 
Number of moles ( ?) 
E Energy or general extensive property 
m
E
e ? 
Specific molar energy (energy per unit mass) or general extensive 
property per unit mass 
eM
n
E
e ? ? 
Specific energy (energy per unit mole) or general extensive 
property per unit mole 
P Pressure (ML
-1
T
-2
) 
V Volume (L
3
); we also have the specific volume or volume per unit 
mass, v (L
3
M
-1
) and the volume per unit mole v (L
3
?
-1
) 
T Temperature ( T) 
? ? Density (ML
-3
); ? = 1/v. 
x Quality 
U Thermodynamic internal energy (ML
2
T
-2
); we also have the internal 
energy per unit mass, u (L
2
T
-2
), and the internal energy per unit 
mole, u (ML
2
T
-2
?
-1
) 
H = U + PV Thermodynamic enthalpy (ML
2
T
-2
); we also have the enthalpy per 
unit mass, h = u + Pv (dimensions: L
2
T
-2
) and the internal energy 
per unit mole h (ML
2
T
-2
?
-1
) 
Page 4


   
 
 
Thermodynamics 
 
Symbol/Formula Parameter 
M Molar mass  (M/ ?) 
m Mass (M) 
M
m
n ? 
Number of moles ( ?) 
E Energy or general extensive property 
m
E
e ? 
Specific molar energy (energy per unit mass) or general extensive 
property per unit mass 
eM
n
E
e ? ? 
Specific energy (energy per unit mole) or general extensive 
property per unit mole 
P Pressure (ML
-1
T
-2
) 
V Volume (L
3
);  
Specific volume or volume per unit mass, v (L
3
M
-1
) and the volume 
per unit mole v (L
3
?
-1
) 
T Temperature ( T) 
? ? Density (ML
-3
); ? = 1/v. 
x Quality 
U Thermodynamic internal energy (ML
2
T
-2
);  
Internal energy per unit mass, u (L
2
T
-2
), and the internal energy per 
unit mole, u (ML
2
T
-2
?
-1
) 
H = U + PV Thermodynamic enthalpy (ML
2
T
-2
);  
Enthalpy per unit mass, h = u + Pv (dimensions: L
2
T
-2
) and the 
internal energy per unit mole h (ML
2
T
-2
?
-1
) 
S Entropy (ML
2
T
-2
T
-1
);  
Entropy per unit mass, s(L
2
T
-2
T
-1
) and the internal energy per unit 
mole s (ML
2
T
-2
T
-1
?
-1
) 
W Work (ML
2
T
-2
) 
Q Heat transfer (ML
2
T
-2
) 
u
W
?
: 
The useful work rate or mechanical power (ML
2
T
-3
) 
m ? : The mass flow rate (MT
-1
) 
   
 
 
2
2
V
?
: 
The kinetic energy per unit mass (L
2
T
-2
) 
gz: The potential energy per unit mass (L
2
T
-2
) 
E
tot
: 
The total energy = m(u + 
2
2
V
?
 + gz)  (ML
2
T
-2
) 
Q
?
: 
The heat transfer rate (ML
2
T
-3
) 
dE
cv
dt
  : 
The rate of change of energy for the control volume.(ml
2
t
-3
) 
M Molar mass  (M/ ?) 
m Mass (M) 
M
m
n ? 
Number of moles ( ?) 
E Energy or general extensive property 
m
E
e ? 
Specific molar energy (energy per unit mass) or general extensive 
property per unit mass 
eM
n
E
e ? ? 
Specific energy (energy per unit mole) or general extensive 
property per unit mole 
P Pressure (ML
-1
T
-2
) 
V Volume (L
3
);  
Specific volume or volume per unit mass, v (L
3
M
-1
) and the volume 
per unit mole v (L
3
?
-1
) 
T Temperature ( T) 
? ? Density (ML
-3
); ? = 1/v. 
x Quality 
U Thermodynamic internal energy (ML
2
T
-2
);  
Internal energy per unit mass, u (L
2
T
-2
), and the internal energy per 
unit mole, u (ML
2
T
-2
?
-1
) 
H = U + PV Thermodynamic enthalpy (ML
2
T
-2
); we also have the enthalpy per 
unit mass, h = u + Pv (dimensions: L
2
T
-2
) and the internal energy 
per unit mole h (ML
2
T
-2
?
-1
) 
S Entropy (ML
2
T
-2
T
-1
);  
Entropy per unit mass, s(L
2
T
-2
T
-1
) and the internal energy per unit 
mole s (ML
2
T
-2
T
-1
?
-1
) 
   
 
 
W Work (ML
2
T
-2
) 
Q Heat transfer (ML
2
T
-2
) 
u
W
?
: 
The useful work rate or mechanical power (ML
2
T
-3
) 
m ? : The mass flow rate (MT
-1
) 
2
2
V
?
: 
The kinetic energy per unit mass (L
2
T
-2
) 
gz: The potential energy per unit mass (L
2
T
-2
) 
E
tot
: 
The total energy = m(u + 
2
2
V
?
 + gz)  (ML
2
T
-2
) 
Q
?
: 
The heat transfer rate (ML
2
T
-3
) 
dE
cv
dt
  : 
The rate of change of energy for the control volume.(ml
2
t
-3
) 
M Molar mass  (M/ ?) 
m Mass (M) 
M
m
n ? 
Number of moles ( ?) 
E Energy or general extensive property 
m
E
e ? 
Specific molar energy (energy per unit mass) or general extensive 
property per unit mass 
eM
n
E
e ? ? 
Specific energy (energy per unit mole) or general extensive 
property per unit mole 
P Pressure (ML
-1
T
-2
) 
V Volume (L
3
); we also have the specific volume or volume per unit 
mass, v (L
3
M
-1
) and the volume per unit mole v (L
3
?
-1
) 
T Temperature ( T) 
? ? Density (ML
-3
); ? = 1/v. 
x Quality 
U Thermodynamic internal energy (ML
2
T
-2
); we also have the internal 
energy per unit mass, u (L
2
T
-2
), and the internal energy per unit 
mole, u (ML
2
T
-2
?
-1
) 
H = U + PV Thermodynamic enthalpy (ML
2
T
-2
); we also have the enthalpy per 
unit mass, h = u + Pv (dimensions: L
2
T
-2
) and the internal energy 
per unit mole h (ML
2
T
-2
?
-1
) 
   
 
 
S Entropy (ML
2
T
-2
T
-1
); we also have the entropy per unit mass, s(L
2
T
-
2
T
-1
) and the internal energy per unit mole s (ML
2
T
-2
T
-1
?
-1
) 
W Work (ML
2
T
-2
) 
Q Heat transfer (ML
2
T
-2
) 
u
W
?
: 
The useful work rate or mechanical power (ML
2
T
-3
) 
m ? : The mass flow rate (MT
-1
) 
2
2
V
?
: 
The kinetic energy per unit mass (L
2
T
-2
) 
gz: The potential energy per unit mass (L
2
T
-2
) 
E
tot
: 
The total energy = m(u + 
2
2
V
?
 + gz)  (ML
2
T
-2
) 
Q
?
: 
The heat transfer rate (ML
2
T
-3
) 
dE
cv
dt
  : 
The rate of change of energy for the control volume. (ml
2
t
-3
) 
 
Unit conversion factors 
For metric units  
? Basic:  
o 1 N = 1 kg·m/s
2
;    
o 1 J = 1 N·m;    
o 1 W = 1 J/s;    
o 1 Pa = 1 N/m
2
. 
? Others:  
o 1 kPa·m
3
 = 1 kJ;    
o T(K) = T(
o
C) + 273.15;    
o 1 L (liter) = 0.001 m
3
;   
o 1 m
2
/s
2
 = 1 J/kg. 
? Prefixes (and abbreviations):  
o nano(n) – 10
-9
;    
o micro( ?) – 10
-6
;    
o milli(m) – 10
-3
;    
o kilo(k) – 10
3
;    
o mega(M) – 10
6
;    
o giga(G) – 10
9
.   
o A metric ton (European word: tonne) is 1000 kg. 
For engineering units 
Page 5


   
 
 
Thermodynamics 
 
Symbol/Formula Parameter 
M Molar mass  (M/ ?) 
m Mass (M) 
M
m
n ? 
Number of moles ( ?) 
E Energy or general extensive property 
m
E
e ? 
Specific molar energy (energy per unit mass) or general extensive 
property per unit mass 
eM
n
E
e ? ? 
Specific energy (energy per unit mole) or general extensive 
property per unit mole 
P Pressure (ML
-1
T
-2
) 
V Volume (L
3
);  
Specific volume or volume per unit mass, v (L
3
M
-1
) and the volume 
per unit mole v (L
3
?
-1
) 
T Temperature ( T) 
? ? Density (ML
-3
); ? = 1/v. 
x Quality 
U Thermodynamic internal energy (ML
2
T
-2
);  
Internal energy per unit mass, u (L
2
T
-2
), and the internal energy per 
unit mole, u (ML
2
T
-2
?
-1
) 
H = U + PV Thermodynamic enthalpy (ML
2
T
-2
);  
Enthalpy per unit mass, h = u + Pv (dimensions: L
2
T
-2
) and the 
internal energy per unit mole h (ML
2
T
-2
?
-1
) 
S Entropy (ML
2
T
-2
T
-1
);  
Entropy per unit mass, s(L
2
T
-2
T
-1
) and the internal energy per unit 
mole s (ML
2
T
-2
T
-1
?
-1
) 
W Work (ML
2
T
-2
) 
Q Heat transfer (ML
2
T
-2
) 
u
W
?
: 
The useful work rate or mechanical power (ML
2
T
-3
) 
m ? : The mass flow rate (MT
-1
) 
   
 
 
2
2
V
?
: 
The kinetic energy per unit mass (L
2
T
-2
) 
gz: The potential energy per unit mass (L
2
T
-2
) 
E
tot
: 
The total energy = m(u + 
2
2
V
?
 + gz)  (ML
2
T
-2
) 
Q
?
: 
The heat transfer rate (ML
2
T
-3
) 
dE
cv
dt
  : 
The rate of change of energy for the control volume.(ml
2
t
-3
) 
M Molar mass  (M/ ?) 
m Mass (M) 
M
m
n ? 
Number of moles ( ?) 
E Energy or general extensive property 
m
E
e ? 
Specific molar energy (energy per unit mass) or general extensive 
property per unit mass 
eM
n
E
e ? ? 
Specific energy (energy per unit mole) or general extensive 
property per unit mole 
P Pressure (ML
-1
T
-2
) 
V Volume (L
3
);  
Specific volume or volume per unit mass, v (L
3
M
-1
) and the volume 
per unit mole v (L
3
?
-1
) 
T Temperature ( T) 
? ? Density (ML
-3
); ? = 1/v. 
x Quality 
U Thermodynamic internal energy (ML
2
T
-2
);  
Internal energy per unit mass, u (L
2
T
-2
), and the internal energy per 
unit mole, u (ML
2
T
-2
?
-1
) 
H = U + PV Thermodynamic enthalpy (ML
2
T
-2
); we also have the enthalpy per 
unit mass, h = u + Pv (dimensions: L
2
T
-2
) and the internal energy 
per unit mole h (ML
2
T
-2
?
-1
) 
S Entropy (ML
2
T
-2
T
-1
);  
Entropy per unit mass, s(L
2
T
-2
T
-1
) and the internal energy per unit 
mole s (ML
2
T
-2
T
-1
?
-1
) 
   
 
 
W Work (ML
2
T
-2
) 
Q Heat transfer (ML
2
T
-2
) 
u
W
?
: 
The useful work rate or mechanical power (ML
2
T
-3
) 
m ? : The mass flow rate (MT
-1
) 
2
2
V
?
: 
The kinetic energy per unit mass (L
2
T
-2
) 
gz: The potential energy per unit mass (L
2
T
-2
) 
E
tot
: 
The total energy = m(u + 
2
2
V
?
 + gz)  (ML
2
T
-2
) 
Q
?
: 
The heat transfer rate (ML
2
T
-3
) 
dE
cv
dt
  : 
The rate of change of energy for the control volume.(ml
2
t
-3
) 
M Molar mass  (M/ ?) 
m Mass (M) 
M
m
n ? 
Number of moles ( ?) 
E Energy or general extensive property 
m
E
e ? 
Specific molar energy (energy per unit mass) or general extensive 
property per unit mass 
eM
n
E
e ? ? 
Specific energy (energy per unit mole) or general extensive 
property per unit mole 
P Pressure (ML
-1
T
-2
) 
V Volume (L
3
); we also have the specific volume or volume per unit 
mass, v (L
3
M
-1
) and the volume per unit mole v (L
3
?
-1
) 
T Temperature ( T) 
? ? Density (ML
-3
); ? = 1/v. 
x Quality 
U Thermodynamic internal energy (ML
2
T
-2
); we also have the internal 
energy per unit mass, u (L
2
T
-2
), and the internal energy per unit 
mole, u (ML
2
T
-2
?
-1
) 
H = U + PV Thermodynamic enthalpy (ML
2
T
-2
); we also have the enthalpy per 
unit mass, h = u + Pv (dimensions: L
2
T
-2
) and the internal energy 
per unit mole h (ML
2
T
-2
?
-1
) 
   
 
 
S Entropy (ML
2
T
-2
T
-1
); we also have the entropy per unit mass, s(L
2
T
-
2
T
-1
) and the internal energy per unit mole s (ML
2
T
-2
T
-1
?
-1
) 
W Work (ML
2
T
-2
) 
Q Heat transfer (ML
2
T
-2
) 
u
W
?
: 
The useful work rate or mechanical power (ML
2
T
-3
) 
m ? : The mass flow rate (MT
-1
) 
2
2
V
?
: 
The kinetic energy per unit mass (L
2
T
-2
) 
gz: The potential energy per unit mass (L
2
T
-2
) 
E
tot
: 
The total energy = m(u + 
2
2
V
?
 + gz)  (ML
2
T
-2
) 
Q
?
: 
The heat transfer rate (ML
2
T
-3
) 
dE
cv
dt
  : 
The rate of change of energy for the control volume. (ml
2
t
-3
) 
 
Unit conversion factors 
For metric units  
? Basic:  
o 1 N = 1 kg·m/s
2
;    
o 1 J = 1 N·m;    
o 1 W = 1 J/s;    
o 1 Pa = 1 N/m
2
. 
? Others:  
o 1 kPa·m
3
 = 1 kJ;    
o T(K) = T(
o
C) + 273.15;    
o 1 L (liter) = 0.001 m
3
;   
o 1 m
2
/s
2
 = 1 J/kg. 
? Prefixes (and abbreviations):  
o nano(n) – 10
-9
;    
o micro( ?) – 10
-6
;    
o milli(m) – 10
-3
;    
o kilo(k) – 10
3
;    
o mega(M) – 10
6
;    
o giga(G) – 10
9
.   
o A metric ton (European word: tonne) is 1000 kg. 
For engineering units 
   
 
 
? Energy:  
o 1 Btu = 5.40395 psia·ft
3
 = 778.169 ft·lb
f
 = (1 kWh)/3412.14 = (1 hp·h )/2544.5  = 
25,037 lb
m
·ft
2
/s
2
. 
? Pressure:  
o 1 psia = 1 lb
f
/in
2
 = 144 psfa = 144 lb
f
/ft
2
. 
? Others:  
o T(R) = T(
o
F) + 459.67;    
o 1 lb
f
 = 32.174 lb
m
·ft/s
2
;    
o 1 ton of refrigeration = 200 Btu/min. 
Concepts & Definitions 
 
 Formula Units 
Pressure F
P
A
? 
Pa 
? Units  
2
1 1 / Pa N m ?
 5
1 10 0.1 bar Pa Mpa ??
 
1 101325 atm Pa ?
 
 
Specific Volume V
v
m
? 
3
/ m kg 
Density m
V
? ?    ?
1
v
? ? 
3
/ kg m 
Static Pressure Variation 
P gh ? ??
                
, ?? ? ? ? ? 
Pa 
Absolute Temperature ( ) ( ) 273.15 T K T C ? ? ?  
Properties of a Pure Substance 
 
 Formula Units 
Quality 
vapor
tot
m
x
m
? (vapour mass fraction) 
1
liquid
tot
m
x
m
?? (Liquid mass fraction) 
 
Specific Volume 
f fg
v v xv ??
             
3
/ m kg
 
Average Specific Volume 
(1 )
fg
v x v xv ? ? ? (only two phase mixture) 
3
/ m kg 
Ideal –gas law 
c
PP ??
      
c
TT ??
      
1 Z ? 
 
? Equations  
Pv RT ?
          
PV mRT nRT ??
 
 
Read More
29 videos|65 docs|36 tests

Top Courses for Mechanical Engineering

FAQs on Formula Sheet: Applied Thermodynamics - Thermodynamics - Mechanical Engineering

1. What is thermodynamics?
Ans. Thermodynamics is a branch of physics that deals with the study of heat and its relation to energy and work. It focuses on the principles that govern the conversion of heat energy into other forms of energy, such as mechanical or electrical energy.
2. What are the laws of thermodynamics?
Ans. The laws of thermodynamics are fundamental principles that govern the behavior of energy and heat in a system. The four laws are: 1) The first law of thermodynamics, also known as the law of conservation of energy, states that energy cannot be created or destroyed, only transferred or transformed. 2) The second law of thermodynamics states that the entropy (or disorder) of a closed system always increases over time. 3) The third law of thermodynamics states that as the temperature approaches absolute zero, the entropy of a system approaches a minimum value. 4) The zeroth law of thermodynamics states that if two systems are in thermal equilibrium with a third system, they are also in thermal equilibrium with each other.
3. What is the difference between open and closed systems in thermodynamics?
Ans. In thermodynamics, an open system refers to a system that can exchange both energy and matter with its surroundings. On the other hand, a closed system is a system that only allows the exchange of energy with its surroundings, while no matter is allowed to enter or leave the system.
4. How is thermodynamics applied in engineering?
Ans. Thermodynamics plays a crucial role in engineering as it is used to analyze and optimize various energy conversion processes. It helps engineers design efficient engines, power plants, refrigeration systems, and other devices that involve the transfer and conversion of energy. Thermodynamic principles are utilized to determine the efficiency, performance, and feasibility of these systems.
5. What is the significance of the Carnot cycle in thermodynamics?
Ans. The Carnot cycle is a theoretical thermodynamic cycle that represents the most efficient possible heat engine operating between two given temperature levels. It serves as a benchmark for comparing the performance of real heat engines. The Carnot cycle helps establish the maximum efficiency that any heat engine can achieve, and it provides insights into the limitations and potential improvements of practical engine designs.
29 videos|65 docs|36 tests
Download as PDF
Explore Courses for Mechanical Engineering exam

Top Courses for Mechanical Engineering

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Sample Paper

,

Summary

,

Extra Questions

,

Formula Sheet: Applied Thermodynamics | Thermodynamics - Mechanical Engineering

,

practice quizzes

,

study material

,

Viva Questions

,

video lectures

,

Formula Sheet: Applied Thermodynamics | Thermodynamics - Mechanical Engineering

,

shortcuts and tricks

,

MCQs

,

Free

,

mock tests for examination

,

pdf

,

Important questions

,

Objective type Questions

,

Semester Notes

,

ppt

,

Previous Year Questions with Solutions

,

Exam

,

Formula Sheet: Applied Thermodynamics | Thermodynamics - Mechanical Engineering

,

past year papers

;