Download, print and study this document offline |
Page 1 Page # 31 COMPLEX NUMBER 1. The complex number system z = a + ib, then a – ib is called congugate of z and is denoted by z . 2. Equality In Complex Number: z 1 = z 2 ?????? Re(z 1 ) = Re(z 2 ) and ? m (z 1 ) = ? m (z 2 ). 3. Properties of arguments (i) arg(z 1 z 2 ) = arg(z 1 ) + arg(z 2 ) + 2m ? for some integer m. (ii) arg(z 1 /z 2 ) = arg (z 1 ) – arg(z 2 ) + 2m ? for some integer m. (iii) arg (z 2 ) = 2arg(z) + 2m ? for some integer m. (iv) arg(z) = 0 ? z is a positive real number (v) arg(z) = ± ?/2 ? z is purely imaginary and z ? 0 4. Properties of conjugate (i) |z| = | z | (ii) z z = |z| 2 (iii) 2 1 z z ? = 1 z + 2 z (iv) 2 1 z z ? = 1 z – 2 z (v) 2 1 z z = 1 z 2 z (vi) ? ? ? ? ? ? ? ? 2 1 z z = 2 1 z z (z 2 ? 0) (vii) |z 1 + z 2 | 2 = (z 1 + z 2 ) ) z z ( 2 1 ? = |z 1 | 2 + |z 2 | 2 + z 1 2 z + 1 z z 2 (viii) ) z ( 1 = z (ix) If w = f(z), then w = f( z ) (x) arg(z) + arg( z ) 5. Rotation theorem If P(z 1 ), Q(z 2 ) and R(z 3 ) are three complex numbers and ?PQR = ?, then ? ? ? ? ? ? ? ? ? ? 2 1 2 3 z z z z = 2 1 2 3 z z z z ? ? e i ? 6. Demoivre’s Theorem : If n is any integer then (i) (cos ? + i sin ? ) n = cos n ? + i sin n ? (ii) (cos ? 1 + i sin ? 1 ) (cos ? 2 + i sin ? 2 ) (cos ? 3 + i sin ? 2 ) (cos ? 3 + i sin ? 3 ) .....(cos ? n + i sin ? n ) = cos ( ? 1 + ? 2 + ? 3 + ......... ? n ) + i sin ( ? 1 + ? 2 + ? 3 + ....... + ? n ) Page 2 Page # 31 COMPLEX NUMBER 1. The complex number system z = a + ib, then a – ib is called congugate of z and is denoted by z . 2. Equality In Complex Number: z 1 = z 2 ?????? Re(z 1 ) = Re(z 2 ) and ? m (z 1 ) = ? m (z 2 ). 3. Properties of arguments (i) arg(z 1 z 2 ) = arg(z 1 ) + arg(z 2 ) + 2m ? for some integer m. (ii) arg(z 1 /z 2 ) = arg (z 1 ) – arg(z 2 ) + 2m ? for some integer m. (iii) arg (z 2 ) = 2arg(z) + 2m ? for some integer m. (iv) arg(z) = 0 ? z is a positive real number (v) arg(z) = ± ?/2 ? z is purely imaginary and z ? 0 4. Properties of conjugate (i) |z| = | z | (ii) z z = |z| 2 (iii) 2 1 z z ? = 1 z + 2 z (iv) 2 1 z z ? = 1 z – 2 z (v) 2 1 z z = 1 z 2 z (vi) ? ? ? ? ? ? ? ? 2 1 z z = 2 1 z z (z 2 ? 0) (vii) |z 1 + z 2 | 2 = (z 1 + z 2 ) ) z z ( 2 1 ? = |z 1 | 2 + |z 2 | 2 + z 1 2 z + 1 z z 2 (viii) ) z ( 1 = z (ix) If w = f(z), then w = f( z ) (x) arg(z) + arg( z ) 5. Rotation theorem If P(z 1 ), Q(z 2 ) and R(z 3 ) are three complex numbers and ?PQR = ?, then ? ? ? ? ? ? ? ? ? ? 2 1 2 3 z z z z = 2 1 2 3 z z z z ? ? e i ? 6. Demoivre’s Theorem : If n is any integer then (i) (cos ? + i sin ? ) n = cos n ? + i sin n ? (ii) (cos ? 1 + i sin ? 1 ) (cos ? 2 + i sin ? 2 ) (cos ? 3 + i sin ? 2 ) (cos ? 3 + i sin ? 3 ) .....(cos ? n + i sin ? n ) = cos ( ? 1 + ? 2 + ? 3 + ......... ? n ) + i sin ( ? 1 + ? 2 + ? 3 + ....... + ? n ) Page # 32 7. Cube Root Of Unity : (i) The cube roots of unity are 1, ? ? 1 3 2 i , ? ? 1 3 2 i . (ii) If ? is one of the imaginary cube roots of unity then 1 + ? + ?² = 0. In general 1 + ? r + ? 2r = 0; where r ? I but is not the multiple of 3. 8. Geometrical Properties: Distance formula : |z 1 – z 2 |. Section formula : z = n m nz mz 1 2 ? ? (internal division), z = n m nz mz 1 2 ? ? (external division) (1) amp(z) = ? is a ray emanating from the origin inclined at an angle ? to the x ? axis. (2) ?z ? a ? = ?z ? b ? is the perpendicular bisector of the line joining a to b. (3) If 1 z z z z ? ? = k ? 1, 0, then locus of z is circle.Read More
130 videos|359 docs|306 tests
|
130 videos|359 docs|306 tests
|