Mechanical Engineering Exam  >  Mechanical Engineering Notes  >  Formula Sheets of Mechanical Engineering  >  Formula Sheet: Industrial Engineering

Formula Sheet: Industrial Engineering | Formula Sheets of Mechanical Engineering PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


 
 
 
 
 
 
Forecasting 
 
• Simple Moving Average- 
?? ?? =
1
?? (?? ?? + ?? ?? -1
+ ?? ?? -2
+ ?? ?? -3
+ ? ) 
• Moving Weight Average-  
Weight Moving Average =
? W
i
D
i
n
t=1
? W
i
n
i=1
 
• Single (Simple) Exponential Smoothing- 
?? ?? = ?? ?? -1
+ ?? (?? ?? -1
- ?? ?? -1
) 
???? ?? ?? = (1 - ?? )?? ?? -1
+ ?? ?? ?? -1
 
if previous forecasting is not given 
?? ?? = ?? ?? ?? + ?? (1 - ?? )?? ?? -1
+ ?? (1 - ?? )
2
?? ?? -2
… …. 
Where ?? ?? = Smoothed average forecast for period t 
?? ?? -1
=Previous period forecast 
?? =Smoothing constant 
• Linear Regression-                                ?? = ?? + ???? 
? ?? = ???? + ?? ? ?? 
? ???? = ?? ? ?? + ?? ? ?? 2
 
• Forecasting Error-                               
?? ?? = (?? ?? - ?? ?? ) 
• Bias-                                                     
???????? =
?? ?? ?(?? ?? - ?? ?? )
?? ?? =?? 
• Mean Absolute Deviation-               
?????? =
?? ?? ? |?? ?? - ?? ?? |
?? ?? =?? 
• Mean Square Error-                        
?????? = 
?? ?? ?(?? ?? - ?? ?? )
?? ?? ?? =?? 
• Mean Absolute Percentage Error-  
???????? =
?? ?? ?
|?? ?? - ?? ?? |
?? ?? ?? ?? =?? × 100 
Inventory 
If D= demand/year, ?? ?? =Order cost, ?? ?? = Carrying cost, P= Purchase price/unit 
 ?? *
=Economic Order Quantity, K= Production Rate and ?? ?? =Shortage  Cost/unit/period 
• Case-1 Purchase Model With Instantaneous Replenishment and Without Shortage-  
1. ?????? ?? *
= v
2?? ?? ?? ?? ??   at EOQ ?????????????????? ???????? = ?????????? ???????? 
2. ???? . ???? ?????????? =
?? ?? *
 
3. ???????? ?????????? ?????? ?????????? =
?? *
?? 
4. ?????????? ???????? = ???????? ???????? + ?????????????????? ???????? + ?????????? ???????? 
                      = (?? × ?? ) + (
?? 2
× ?? ?? ) + (
?? ?? × ?? ?? )= (?? × ?? ) + v2?? ?? ?? ?? ?? 
• Case-2 Manufacturing Model Without Shortage- 
 
Page 2


 
 
 
 
 
 
Forecasting 
 
• Simple Moving Average- 
?? ?? =
1
?? (?? ?? + ?? ?? -1
+ ?? ?? -2
+ ?? ?? -3
+ ? ) 
• Moving Weight Average-  
Weight Moving Average =
? W
i
D
i
n
t=1
? W
i
n
i=1
 
• Single (Simple) Exponential Smoothing- 
?? ?? = ?? ?? -1
+ ?? (?? ?? -1
- ?? ?? -1
) 
???? ?? ?? = (1 - ?? )?? ?? -1
+ ?? ?? ?? -1
 
if previous forecasting is not given 
?? ?? = ?? ?? ?? + ?? (1 - ?? )?? ?? -1
+ ?? (1 - ?? )
2
?? ?? -2
… …. 
Where ?? ?? = Smoothed average forecast for period t 
?? ?? -1
=Previous period forecast 
?? =Smoothing constant 
• Linear Regression-                                ?? = ?? + ???? 
? ?? = ???? + ?? ? ?? 
? ???? = ?? ? ?? + ?? ? ?? 2
 
• Forecasting Error-                               
?? ?? = (?? ?? - ?? ?? ) 
• Bias-                                                     
???????? =
?? ?? ?(?? ?? - ?? ?? )
?? ?? =?? 
• Mean Absolute Deviation-               
?????? =
?? ?? ? |?? ?? - ?? ?? |
?? ?? =?? 
• Mean Square Error-                        
?????? = 
?? ?? ?(?? ?? - ?? ?? )
?? ?? ?? =?? 
• Mean Absolute Percentage Error-  
???????? =
?? ?? ?
|?? ?? - ?? ?? |
?? ?? ?? ?? =?? × 100 
Inventory 
If D= demand/year, ?? ?? =Order cost, ?? ?? = Carrying cost, P= Purchase price/unit 
 ?? *
=Economic Order Quantity, K= Production Rate and ?? ?? =Shortage  Cost/unit/period 
• Case-1 Purchase Model With Instantaneous Replenishment and Without Shortage-  
1. ?????? ?? *
= v
2?? ?? ?? ?? ??   at EOQ ?????????????????? ???????? = ?????????? ???????? 
2. ???? . ???? ?????????? =
?? ?? *
 
3. ???????? ?????????? ?????? ?????????? =
?? *
?? 
4. ?????????? ???????? = ???????? ???????? + ?????????????????? ???????? + ?????????? ???????? 
                      = (?? × ?? ) + (
?? 2
× ?? ?? ) + (
?? ?? × ?? ?? )= (?? × ?? ) + v2?? ?? ?? ?? ?? 
• Case-2 Manufacturing Model Without Shortage- 
 
 
 
 
 
 
 
 
 
1. ?????? ?? *
=
v
2?? ?? ?? ?? ?? (1-
?? ?? )
 
2. ?? 1
=
?? *
?? 
3. ?? 2
=
?? *
(1-
?? ?? )
?? 
4. Total optimum cost = v2?? ?? ?? ?? ?? (1 -
?? ?? ) 
• Case 3 Purchase Model With Shortage- 
 
 
 
1. ?? = ?????? = v
2?? ?? ?? ?? ?? (
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) ,  ?? 2
= ?? - ?? 1
 
3. ?? =
?? ?? , ?? 1
=
?? 1
?? and ?? 2
=
?? 2
?? 
4. Total optimum cost =v2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) 
• Case 4 Manufacturing Model With Shortfall 
 
 
1. ?? = ?????? =
v
2?? ?? ?? ?? ?? ×(1-
?? ?? )
(
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) × (1 -
?? ?? ) 
Page 3


 
 
 
 
 
 
Forecasting 
 
• Simple Moving Average- 
?? ?? =
1
?? (?? ?? + ?? ?? -1
+ ?? ?? -2
+ ?? ?? -3
+ ? ) 
• Moving Weight Average-  
Weight Moving Average =
? W
i
D
i
n
t=1
? W
i
n
i=1
 
• Single (Simple) Exponential Smoothing- 
?? ?? = ?? ?? -1
+ ?? (?? ?? -1
- ?? ?? -1
) 
???? ?? ?? = (1 - ?? )?? ?? -1
+ ?? ?? ?? -1
 
if previous forecasting is not given 
?? ?? = ?? ?? ?? + ?? (1 - ?? )?? ?? -1
+ ?? (1 - ?? )
2
?? ?? -2
… …. 
Where ?? ?? = Smoothed average forecast for period t 
?? ?? -1
=Previous period forecast 
?? =Smoothing constant 
• Linear Regression-                                ?? = ?? + ???? 
? ?? = ???? + ?? ? ?? 
? ???? = ?? ? ?? + ?? ? ?? 2
 
• Forecasting Error-                               
?? ?? = (?? ?? - ?? ?? ) 
• Bias-                                                     
???????? =
?? ?? ?(?? ?? - ?? ?? )
?? ?? =?? 
• Mean Absolute Deviation-               
?????? =
?? ?? ? |?? ?? - ?? ?? |
?? ?? =?? 
• Mean Square Error-                        
?????? = 
?? ?? ?(?? ?? - ?? ?? )
?? ?? ?? =?? 
• Mean Absolute Percentage Error-  
???????? =
?? ?? ?
|?? ?? - ?? ?? |
?? ?? ?? ?? =?? × 100 
Inventory 
If D= demand/year, ?? ?? =Order cost, ?? ?? = Carrying cost, P= Purchase price/unit 
 ?? *
=Economic Order Quantity, K= Production Rate and ?? ?? =Shortage  Cost/unit/period 
• Case-1 Purchase Model With Instantaneous Replenishment and Without Shortage-  
1. ?????? ?? *
= v
2?? ?? ?? ?? ??   at EOQ ?????????????????? ???????? = ?????????? ???????? 
2. ???? . ???? ?????????? =
?? ?? *
 
3. ???????? ?????????? ?????? ?????????? =
?? *
?? 
4. ?????????? ???????? = ???????? ???????? + ?????????????????? ???????? + ?????????? ???????? 
                      = (?? × ?? ) + (
?? 2
× ?? ?? ) + (
?? ?? × ?? ?? )= (?? × ?? ) + v2?? ?? ?? ?? ?? 
• Case-2 Manufacturing Model Without Shortage- 
 
 
 
 
 
 
 
 
 
1. ?????? ?? *
=
v
2?? ?? ?? ?? ?? (1-
?? ?? )
 
2. ?? 1
=
?? *
?? 
3. ?? 2
=
?? *
(1-
?? ?? )
?? 
4. Total optimum cost = v2?? ?? ?? ?? ?? (1 -
?? ?? ) 
• Case 3 Purchase Model With Shortage- 
 
 
 
1. ?? = ?????? = v
2?? ?? ?? ?? ?? (
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) ,  ?? 2
= ?? - ?? 1
 
3. ?? =
?? ?? , ?? 1
=
?? 1
?? and ?? 2
=
?? 2
?? 
4. Total optimum cost =v2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) 
• Case 4 Manufacturing Model With Shortfall 
 
 
1. ?? = ?????? =
v
2?? ?? ?? ?? ?? ×(1-
?? ?? )
(
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) × (1 -
?? ?? ) 
 
 
 
 
 
 
3. ?? 1
= (1 -
?? ?? ) ?? - ?? 2
 
4. ?? =
?? ?? , ?? 1
=
?? 1
?? -?? and ?? 2
=
?? 1
?? 
1. ?? 3
=
?? 3
?? and ?? 4
=
?? 2
?? -??   
 
• Lead Time Demand + Safety Stock = Reorder Point 
PERT and CPM 
• EFT = EST + activity time 
• LFT = LST + Duration of activity 
 
• Total Float-  
 
 
• Free Float-  FFo= (Ej-Ei)-Tij 
 
• Independent Float -  
 
Example-  
 
 
1. Total float = L2 – (E1 + t12) = 57 – (20 + 19) = 18 
2. Free float = E2 – E1 – t12 = 0 
3. Independent float = E2 – (L1 + t12) = -18 
• PERT Expected time- ?? ?? =
?? 0
+4?? ?? +?? ?? 6
 
1. t0 = Optimistic time i.e., shortest possible time to complete the activity 
if all goes well. 
2. tp = Pessimistic time i.e., longest time that an activity could take if 
everything goes wrong. 
3. tm = Most likely time i.e., normal time of an activity would take. 
• Standard deviation-  
 
 
• Variance -  
 
 
• Crashing-  
 
• Standard Normal Variation (SNV)-  
 
Page 4


 
 
 
 
 
 
Forecasting 
 
• Simple Moving Average- 
?? ?? =
1
?? (?? ?? + ?? ?? -1
+ ?? ?? -2
+ ?? ?? -3
+ ? ) 
• Moving Weight Average-  
Weight Moving Average =
? W
i
D
i
n
t=1
? W
i
n
i=1
 
• Single (Simple) Exponential Smoothing- 
?? ?? = ?? ?? -1
+ ?? (?? ?? -1
- ?? ?? -1
) 
???? ?? ?? = (1 - ?? )?? ?? -1
+ ?? ?? ?? -1
 
if previous forecasting is not given 
?? ?? = ?? ?? ?? + ?? (1 - ?? )?? ?? -1
+ ?? (1 - ?? )
2
?? ?? -2
… …. 
Where ?? ?? = Smoothed average forecast for period t 
?? ?? -1
=Previous period forecast 
?? =Smoothing constant 
• Linear Regression-                                ?? = ?? + ???? 
? ?? = ???? + ?? ? ?? 
? ???? = ?? ? ?? + ?? ? ?? 2
 
• Forecasting Error-                               
?? ?? = (?? ?? - ?? ?? ) 
• Bias-                                                     
???????? =
?? ?? ?(?? ?? - ?? ?? )
?? ?? =?? 
• Mean Absolute Deviation-               
?????? =
?? ?? ? |?? ?? - ?? ?? |
?? ?? =?? 
• Mean Square Error-                        
?????? = 
?? ?? ?(?? ?? - ?? ?? )
?? ?? ?? =?? 
• Mean Absolute Percentage Error-  
???????? =
?? ?? ?
|?? ?? - ?? ?? |
?? ?? ?? ?? =?? × 100 
Inventory 
If D= demand/year, ?? ?? =Order cost, ?? ?? = Carrying cost, P= Purchase price/unit 
 ?? *
=Economic Order Quantity, K= Production Rate and ?? ?? =Shortage  Cost/unit/period 
• Case-1 Purchase Model With Instantaneous Replenishment and Without Shortage-  
1. ?????? ?? *
= v
2?? ?? ?? ?? ??   at EOQ ?????????????????? ???????? = ?????????? ???????? 
2. ???? . ???? ?????????? =
?? ?? *
 
3. ???????? ?????????? ?????? ?????????? =
?? *
?? 
4. ?????????? ???????? = ???????? ???????? + ?????????????????? ???????? + ?????????? ???????? 
                      = (?? × ?? ) + (
?? 2
× ?? ?? ) + (
?? ?? × ?? ?? )= (?? × ?? ) + v2?? ?? ?? ?? ?? 
• Case-2 Manufacturing Model Without Shortage- 
 
 
 
 
 
 
 
 
 
1. ?????? ?? *
=
v
2?? ?? ?? ?? ?? (1-
?? ?? )
 
2. ?? 1
=
?? *
?? 
3. ?? 2
=
?? *
(1-
?? ?? )
?? 
4. Total optimum cost = v2?? ?? ?? ?? ?? (1 -
?? ?? ) 
• Case 3 Purchase Model With Shortage- 
 
 
 
1. ?? = ?????? = v
2?? ?? ?? ?? ?? (
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) ,  ?? 2
= ?? - ?? 1
 
3. ?? =
?? ?? , ?? 1
=
?? 1
?? and ?? 2
=
?? 2
?? 
4. Total optimum cost =v2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) 
• Case 4 Manufacturing Model With Shortfall 
 
 
1. ?? = ?????? =
v
2?? ?? ?? ?? ?? ×(1-
?? ?? )
(
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) × (1 -
?? ?? ) 
 
 
 
 
 
 
3. ?? 1
= (1 -
?? ?? ) ?? - ?? 2
 
4. ?? =
?? ?? , ?? 1
=
?? 1
?? -?? and ?? 2
=
?? 1
?? 
1. ?? 3
=
?? 3
?? and ?? 4
=
?? 2
?? -??   
 
• Lead Time Demand + Safety Stock = Reorder Point 
PERT and CPM 
• EFT = EST + activity time 
• LFT = LST + Duration of activity 
 
• Total Float-  
 
 
• Free Float-  FFo= (Ej-Ei)-Tij 
 
• Independent Float -  
 
Example-  
 
 
1. Total float = L2 – (E1 + t12) = 57 – (20 + 19) = 18 
2. Free float = E2 – E1 – t12 = 0 
3. Independent float = E2 – (L1 + t12) = -18 
• PERT Expected time- ?? ?? =
?? 0
+4?? ?? +?? ?? 6
 
1. t0 = Optimistic time i.e., shortest possible time to complete the activity 
if all goes well. 
2. tp = Pessimistic time i.e., longest time that an activity could take if 
everything goes wrong. 
3. tm = Most likely time i.e., normal time of an activity would take. 
• Standard deviation-  
 
 
• Variance -  
 
 
• Crashing-  
 
• Standard Normal Variation (SNV)-  
 
 
 
 
 
 
 
Linear Programming 
Simplex Method Case 1. Maximization Problem 
3 1 5 2
/ 3 1 2 2 18 ( )
=+
+ ? -
MaxZ x x
s t x x I
 
1 4 ( )
2 6 ( )
1, 2 0
?-
?-
?
x II
x III
xx
 
Standard Form:  
Max Z = 3x1 + 5x2 + 0w1 + 0w2 + 0w3 
3x1 + 2x2 + w1 + 0w2 + 0w3  =  18 
x1 + 0x2 + 0w1 + w2 + 0w3  =  4  
0x1 + x2 + 0w1 + 0w2 + w3   =   6 
To prepare initial Table: 
Table - I  
 
•  Ij = (Zj-cj) = ( ?aij.ci)-cj  
Interpretation of  Simplex Table  
                  Table - I  
 
 
• Key Column ? Min Ij   [ Most Negative ]  
• Key Row ? Min positive ratio.  
How to get next table ? 
• Leaving variable : w3 
•  Entering variable : x2 
•  Key no. = 1 
•  For old key row : New No.= Old No./key No. 
•  For other rows: 
( .).
( .)
..
.
=-
CorrespondingKeyRowNo
CorrespondingKeyColumnNo
NewNo Old No
KeyNo
 
• 18 ? 18 - (6*2)/1 = 6 
• I(w3) = 0 ? 0 - [1*(-5)]/1 = 5 
Page 5


 
 
 
 
 
 
Forecasting 
 
• Simple Moving Average- 
?? ?? =
1
?? (?? ?? + ?? ?? -1
+ ?? ?? -2
+ ?? ?? -3
+ ? ) 
• Moving Weight Average-  
Weight Moving Average =
? W
i
D
i
n
t=1
? W
i
n
i=1
 
• Single (Simple) Exponential Smoothing- 
?? ?? = ?? ?? -1
+ ?? (?? ?? -1
- ?? ?? -1
) 
???? ?? ?? = (1 - ?? )?? ?? -1
+ ?? ?? ?? -1
 
if previous forecasting is not given 
?? ?? = ?? ?? ?? + ?? (1 - ?? )?? ?? -1
+ ?? (1 - ?? )
2
?? ?? -2
… …. 
Where ?? ?? = Smoothed average forecast for period t 
?? ?? -1
=Previous period forecast 
?? =Smoothing constant 
• Linear Regression-                                ?? = ?? + ???? 
? ?? = ???? + ?? ? ?? 
? ???? = ?? ? ?? + ?? ? ?? 2
 
• Forecasting Error-                               
?? ?? = (?? ?? - ?? ?? ) 
• Bias-                                                     
???????? =
?? ?? ?(?? ?? - ?? ?? )
?? ?? =?? 
• Mean Absolute Deviation-               
?????? =
?? ?? ? |?? ?? - ?? ?? |
?? ?? =?? 
• Mean Square Error-                        
?????? = 
?? ?? ?(?? ?? - ?? ?? )
?? ?? ?? =?? 
• Mean Absolute Percentage Error-  
???????? =
?? ?? ?
|?? ?? - ?? ?? |
?? ?? ?? ?? =?? × 100 
Inventory 
If D= demand/year, ?? ?? =Order cost, ?? ?? = Carrying cost, P= Purchase price/unit 
 ?? *
=Economic Order Quantity, K= Production Rate and ?? ?? =Shortage  Cost/unit/period 
• Case-1 Purchase Model With Instantaneous Replenishment and Without Shortage-  
1. ?????? ?? *
= v
2?? ?? ?? ?? ??   at EOQ ?????????????????? ???????? = ?????????? ???????? 
2. ???? . ???? ?????????? =
?? ?? *
 
3. ???????? ?????????? ?????? ?????????? =
?? *
?? 
4. ?????????? ???????? = ???????? ???????? + ?????????????????? ???????? + ?????????? ???????? 
                      = (?? × ?? ) + (
?? 2
× ?? ?? ) + (
?? ?? × ?? ?? )= (?? × ?? ) + v2?? ?? ?? ?? ?? 
• Case-2 Manufacturing Model Without Shortage- 
 
 
 
 
 
 
 
 
 
1. ?????? ?? *
=
v
2?? ?? ?? ?? ?? (1-
?? ?? )
 
2. ?? 1
=
?? *
?? 
3. ?? 2
=
?? *
(1-
?? ?? )
?? 
4. Total optimum cost = v2?? ?? ?? ?? ?? (1 -
?? ?? ) 
• Case 3 Purchase Model With Shortage- 
 
 
 
1. ?? = ?????? = v
2?? ?? ?? ?? ?? (
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) ,  ?? 2
= ?? - ?? 1
 
3. ?? =
?? ?? , ?? 1
=
?? 1
?? and ?? 2
=
?? 2
?? 
4. Total optimum cost =v2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) 
• Case 4 Manufacturing Model With Shortfall 
 
 
1. ?? = ?????? =
v
2?? ?? ?? ?? ?? ×(1-
?? ?? )
(
?? ?? +?? ?? ?? ?? ) 
2. ?? 1
= v
2?? ?? ?? ?? ?? (
?? ?? ?? ?? +?? ?? ) × (1 -
?? ?? ) 
 
 
 
 
 
 
3. ?? 1
= (1 -
?? ?? ) ?? - ?? 2
 
4. ?? =
?? ?? , ?? 1
=
?? 1
?? -?? and ?? 2
=
?? 1
?? 
1. ?? 3
=
?? 3
?? and ?? 4
=
?? 2
?? -??   
 
• Lead Time Demand + Safety Stock = Reorder Point 
PERT and CPM 
• EFT = EST + activity time 
• LFT = LST + Duration of activity 
 
• Total Float-  
 
 
• Free Float-  FFo= (Ej-Ei)-Tij 
 
• Independent Float -  
 
Example-  
 
 
1. Total float = L2 – (E1 + t12) = 57 – (20 + 19) = 18 
2. Free float = E2 – E1 – t12 = 0 
3. Independent float = E2 – (L1 + t12) = -18 
• PERT Expected time- ?? ?? =
?? 0
+4?? ?? +?? ?? 6
 
1. t0 = Optimistic time i.e., shortest possible time to complete the activity 
if all goes well. 
2. tp = Pessimistic time i.e., longest time that an activity could take if 
everything goes wrong. 
3. tm = Most likely time i.e., normal time of an activity would take. 
• Standard deviation-  
 
 
• Variance -  
 
 
• Crashing-  
 
• Standard Normal Variation (SNV)-  
 
 
 
 
 
 
 
Linear Programming 
Simplex Method Case 1. Maximization Problem 
3 1 5 2
/ 3 1 2 2 18 ( )
=+
+ ? -
MaxZ x x
s t x x I
 
1 4 ( )
2 6 ( )
1, 2 0
?-
?-
?
x II
x III
xx
 
Standard Form:  
Max Z = 3x1 + 5x2 + 0w1 + 0w2 + 0w3 
3x1 + 2x2 + w1 + 0w2 + 0w3  =  18 
x1 + 0x2 + 0w1 + w2 + 0w3  =  4  
0x1 + x2 + 0w1 + 0w2 + w3   =   6 
To prepare initial Table: 
Table - I  
 
•  Ij = (Zj-cj) = ( ?aij.ci)-cj  
Interpretation of  Simplex Table  
                  Table - I  
 
 
• Key Column ? Min Ij   [ Most Negative ]  
• Key Row ? Min positive ratio.  
How to get next table ? 
• Leaving variable : w3 
•  Entering variable : x2 
•  Key no. = 1 
•  For old key row : New No.= Old No./key No. 
•  For other rows: 
( .).
( .)
..
.
=-
CorrespondingKeyRowNo
CorrespondingKeyColumnNo
NewNo Old No
KeyNo
 
• 18 ? 18 - (6*2)/1 = 6 
• I(w3) = 0 ? 0 - [1*(-5)]/1 = 5 
 
 
 
 
 
 
Table - II 
 
• Key Column ? Min Ij  
• Key Row ? Min positive ratio 
Table - III 
  
• This is the final Table 
The Optimal Solution is   x1 = 2, x2 = 6 
                                        giving Z = 36   
Type of Solutions : Basic, Feasible/Infeasible, Optimal/  Non-Optimal, 
Unique/Alternative Optimal, Bounded/Unbounded, Degenerate/Non-Degenerate  
• Analysis of Solution 
1. This is a  Basic solution, as values of basic variables  are Positive  
2. This is a  feasible solution, as values of basic variables, not containing 
Artificial Variable, are Positive  and all constraints are satisfied 
3. This Feasible solution is an Optimal, as all values in Index Row are positive. 
4. If there is an Artificial Variable, as Basic variable in final  table,  it is called as 
Infeasible solution 
5. This solution is unique Optimal, as the number of zeroes are equal to number 
of basic variables in Index Row in final Table. 
6. If the number of zeroes are more than number of basic variables in Index Row 
in final  Table, it is a case of more than one optimal solutions. 
7. This is a Bounded Solution, as the values of all Basic variables in final table, 
are finite positive. 
8. This is a Non-degenerate Solution, as value of none of the basic variables is 
Zero ,  in final table. 
9. If value of at least one of the basic variables is Zero in Index Row in final  
Table, it is a Degenerate Solution. 
• Duality With Example 
1. Case-1 
Max.Z =  x1 - x2  + 3x3 
s/t   x1 +  x2  + x3  ?  10 
2 x1 -  x2  -  x3 ?  2 
2x1   -  2x2  - 3x3 ?  6 
x1 , x2, x3  ?  0 
Dual of this would be 
         Min Z = 10y1  +2y2  + 6y3 
                 s/t   y1 + 2 y2  + 2y3   ?   1 
                           y1 -  y2  - 2y3    ?  -1  
                          y1   -  y2  - 3y3   ?   3  
                                 y1 , y3 , y3   ?   0 ,  
Read More
13 docs

Top Courses for Mechanical Engineering

FAQs on Formula Sheet: Industrial Engineering - Formula Sheets of Mechanical Engineering

1. What is industrial engineering?
Ans. Industrial engineering is a field of engineering that focuses on optimizing complex processes, systems, and organizations to improve efficiency, productivity, and quality. It involves the application of mathematics, science, and engineering principles to design, analyze, and improve systems and processes across various industries.
2. What are the key responsibilities of an industrial engineer?
Ans. Industrial engineers are responsible for analyzing and improving processes, systems, and organizations. Some of their key responsibilities include identifying areas for improvement, developing and implementing strategies for optimizing efficiency and productivity, conducting time and motion studies, designing and implementing workstations and layouts, and collaborating with various stakeholders to implement changes and achieve organizational goals.
3. How does industrial engineering differ from other branches of engineering?
Ans. Industrial engineering differs from other branches of engineering in that it focuses on optimizing processes, systems, and organizations rather than designing and building physical structures or products. While other branches of engineering may focus on specific technical aspects, industrial engineering takes a holistic approach to improve overall efficiency and effectiveness in industries.
4. What skills are important for industrial engineers to possess?
Ans. Industrial engineers should possess strong analytical and problem-solving skills, as they often need to identify and resolve complex issues in processes and systems. They should also have excellent communication and interpersonal skills, as they need to collaborate with various stakeholders and effectively communicate their recommendations. Additionally, proficiency in computer-aided design (CAD), statistical analysis software, and project management tools is important for industrial engineers.
5. What are some common industries that employ industrial engineers?
Ans. Industrial engineers are employed in various industries, including manufacturing, healthcare, logistics, transportation, consulting, and government sectors. They play a crucial role in improving efficiency and productivity across these industries by optimizing processes, systems, and organizations.
Explore Courses for Mechanical Engineering exam

Top Courses for Mechanical Engineering

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Exam

,

Semester Notes

,

Objective type Questions

,

Sample Paper

,

Important questions

,

Viva Questions

,

Summary

,

Free

,

Extra Questions

,

study material

,

Previous Year Questions with Solutions

,

video lectures

,

practice quizzes

,

ppt

,

Formula Sheet: Industrial Engineering | Formula Sheets of Mechanical Engineering

,

shortcuts and tricks

,

mock tests for examination

,

Formula Sheet: Industrial Engineering | Formula Sheets of Mechanical Engineering

,

pdf

,

MCQs

,

Formula Sheet: Industrial Engineering | Formula Sheets of Mechanical Engineering

,

past year papers

;